

EPA 550/9-79-402

BOISE COMMUNITY NOISE SURVEY

MAY 1979

U.S. ENVIRONMENTAL PROTECTION AGENCY OFFICE OF NOISE ABATEMENT AND CONTROL Washington, D.C. 20406

Table of Contents

Section

	FOREWORD	v
	ACKNOWLEDGEMENTS	vi
	TABLE OF CONTENTS	iii
1	INTRODUCTION	1
	1.1 General Noise Climate	1 2 2
2	INTRODUCTION	5
	2.1 Background	5
3	THE NATURE OF COMMUNITY NOISE	7
	3.1 Nature of Community Noise	7 8
4	PROGRAM STRUCTURE	4
		4 4 15 17
5	RESULTS AND RECOMMENDATIONS	19
		19 33
REFER	RENCES	39
GLOSS	SARY	41

iii

Table of Contents

Section

APPENDIX	A -	SURVEY METHOD	-1
APPENDIX	в –	DATA REDUCTION AND ANALYSIS	-1
APPENDIX	C -	EQUIPMENT DETAILS	-1
APPENDIX	D -	DATA FORMS AND INSTRUCTIONS D	-1
APPENDIX	E -	24-HOUR DATA	-1

FOREWORD

In conjunction with the Ada Planning Association, the United States Environmental Protection Agency (EPA) through its Office of Noise Abatement and Control and its Region X office inventoried the noise climate in Boise, Idaho to test the accuracy of a physical measurement protocol. EPA hopes it will become part of a broad technical assistance package available to communities who may wish to develop or improve a noise control program. Based on the Boise results, the spatial sampling method will be revised slightly so that the sample will better represent the real noise climate.

v

and a start water and a start of the second start of the start of the start of the second start of the start of

ACKNOWLEDGEMENTS

EPA would like to thank the following for their help in this project.

City of Boise Ada Planning Association Boise State University Urban Research Center Boise State University Student Volunteers Borah High School Ecology Club Members

Without their time and effort, this project would not have been successful.

į

1 INTRODUCTION

A noise measurement survey was carried out in Boise, Idaho to (1) determine existing sound levels, (2) assist area planners, and (3) develop a useful noise measurement procedure for use in other cities. Survey results concerning the noise environment of Boise, Idaho are presented.

1.1 General Noise Climate

In Boise, a city with a population exceeding 100,000, the average sound levels for residential and park areas (L_{dn} values from 53 to 54 dB) are near those of typical quiet suburban or small town environments. Sound levels at night often diminish to those of the natural geographical area without human activity (A-weighted sound levels to 30 dB). Thus, on the average, it is a quieter place to live than would be expected of a city that size. The industrial, commercial, and central business districts, however, have average sound levels typical of a noisy urban environment (L_{dn} 62-66 dB)*, and in places these levels decrease by only a moderate amount even late at night. The airport influence area contains a region generally considered unsuitable for residential use (within the NEF-40** noise contour), although most industrial or agricultural activities would be compatible with this area's average noise levels. The outer section of the influence area (between the NEF-30 and NEF-40 contours) is marginally compatible for residential usage, but the interior and exterior noise

* See Glossary

**NEF-Noise Exposure Forecast is a method for developing noise contours in the vicinity of airports, contours generally range from less than 20 NEF for lightly impacted areas to more than 40 NEF for heavily impacted areas.

environments would be less desirable than those of other residential areas of the city.

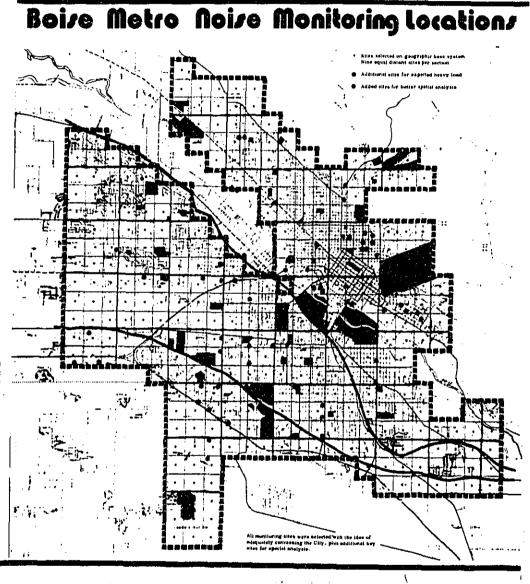
1.2 Major Noise Sources

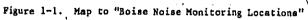
The principal source of noise in Boise is street traffic. Approximately three-quarters of the local noise intrusions occurring outside of the airport influence area are due to cars or trucks, with an additional 10 percent due to jet aircraft and 4 percent to dogs barking. Even within the airport influence area, over half of the intrusions are due to street traffic. The average sound levels along principal arterials and freeways carrying average daily traffic (ADT) greater than 6000 vehicles per day were significantly greater than those along roads with ADT less than 6000 (10 dB difference in L_{dn}).

1.3 Recommendations

To preserve the low average residential sound levels and to prevent growth of sound levels in industrial and commercial areas, planners should consider limiting maximum ADT for major arterials through residential areas to below 6000. The use of multiple, low volume arterials may be necessary to accomplish this as development expands further into the foothills to the north and farmland to the southwest.

To remove some of the most intrusive roadway sounds, a vehicle noise enforcement program could be instituted to reduce the sound levels produced by heavy trucks. An enforced requirement that the A-weighted sound level of a vehicle not exceed 86 dB at 15m (50 feet) when operated


on a surface street would be consistent with regulations in effect in other cities and States and would result in a reduction in sound level of approximately the loudest 2 percent of trucks operating in the city.


Airport influence area development should be carefully planned based on predicted future NEF contours. Residential development should not be permitted within the predicted 1992 NEF-40 contour. Residences constructed between the projected 1992 NEF-40 and NEF-30 contours will require special sound-insulating construction techniques to attain average interior sound levels equivalent to those in other residential areas. Housing with limited outdoor space, such as planned community developments or condominiums containing enclosed recreational facilities, appear more appropriate for this area than single family residences with large outdoor living spaces.

It should be noted, that these recommendations are made for the sole purpose of controlling noise. There are of course, other factors that must be taken into consideration, such as economic impacts, effects on community growth, etc. Conflicts with the recommendations presented in this report may arise, and where they do compromises will have to be made.

3

and a second and and and a second second

4

and a second second

2.1 Background

Noise pollution can be a major contributor to the deterioration of the quality of the community environment. This fact is best exemplified by the Bureau of Census 1976 Annual Housing Survey, which showed that Americans' biggest complaint about their neighborhoods is noise. The survey revealed that 24 percent of America's urban households feel that noise is the most undesirable neighborhood condition. By contrast the other most commonly cited complaints were heavy traffic (14 percent), street repair (13 percent), street lighting (9 percent), and crime (8 percent).

Since noise is primarily a local problem, it is no wonder that communities are beginning to take a harder look at community noise and its adverse impacts. Understanding noise patterns and impacts enables a community to effectively plan and manage land use and to deal with significant noise sources.

Communities desiring to maintain or improve the quality of the noise environment must first have an understanding of the existing noise climate. A noise inventory (i.e., a survey of the acoustical climate of the community) is the basis from which to determine the need for a noise control program and the most effective measures (e.g., planning and legislation) for its implementation. The noise inventory can provide city officials with a basis for exploring slternative

5

แสนกรรณสารกระบบสารสารสารสารกระบบสารกระบบสารกระบบสารกระบบสารกระบบสารกระบบสารกระบบสารกระบบสารกระบบสารกระบบสารกระบ

programs for achieving or maintaining desired noise levels and for forecasting future noise levels. In addition, it permits the validation of noise prediction models. Finally, the inventory permits officiale and planners to gain a better grasp of how various levels of environmental noise translate into community noise problems.

To assure that communities have a method or protocol to allow them to effectively conduct a noise survey, the Environmental Protection Agency (EPA) has been developing a noise monitoring manual.^{3*} This project is one of several aimed at providing EPA technical noise control assistance to communities interested in beginning or expanding a noise control program. The noise monitoring manual had reached the stage of development in which an interim protocol had evolved and required testing. As the city selected for testing this interim protocol, Boise offers a moderate size community having a climate that permits acoustic sound level measurements in the month of January, a university having an environmental sciences program to which the project could be tied, and, finally, a city government and an area planning agency that realizes the importance of preserving a quality environment.

*Superscripts designate references.

المستعمد المعادية والمعارف والمعارف والمعادية والمتحد والمحمد والمعاد والمعاد والمعاد والمعاد والمعاد والمعادية

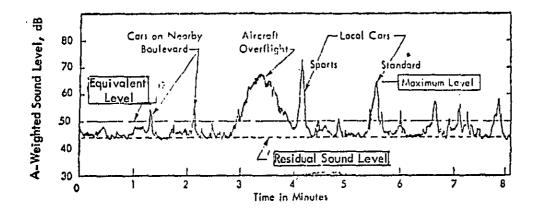
3 THE NATURE OF COMMUNITY NOISE

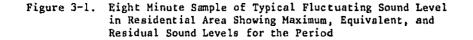
3.1 Nature of Community Noise

Sound consists of small rapidly varying pressure fluctuations that travel through the air and that are perceived to have the qualities of tone and loudness. These sound waves generally become less intense (appear quieter) as they move sway from a source, but can reflect back off of surfaces such as buildings, refract around surfaces such as noise barriers, be absorbed by surfaces such as grass, and even be focused by the atmosphere to cause unusually loud or quiet areas. In a community, the surfaces that can obstruct or redirect sound waves produced by the various sources of sound in the community are many. Thus, the loudness perceived by a listener at any one moment will vary greatly depending on his location. Small movements, even as small as 3 meters (10 feet), can cause dramatic differences in the level of the community noise. Added to this complicated spatial variation of noise level is the fact that the intensity and location of the various noise sources usually change as time passes (e.g., accelerating motor vehicles). Thus, the fine, complex spatial patterns of loudness found in the community are continually changing. For example, during certain periods at a given location, the noise environment may be dominated by intrusively loud sounds from specific sources such as automobiles or airplanes. At other times, it will consist of a constant background of many indistinguishable sounds,

7

monument and the second second and the second of the second second second second second second second second se


To measure these spatial and temporal changes of community noise in detail requires an extremely intense effort. It has been accomplished only for small areas, such as one city block, in scientific studies in which there were available methods of interpreting the necessary voluminous data. To assess and describe the "noise climate" of an entire community, much simpler techniques based on averages of the noise level fluctuations in time and space must be used.


3.2 Measures of Community Noise

In community noise work, the subjective loudness experienced at any instant is measured objectively with a sound level meter as the instantaneous <u>A-weighted sound level</u>. The term "level" indicates a measure of what is perceived as loudness, and the term "A-weighted" indicates that a relative weighting of the sound level at various pitches that corresponds to the pitch response of human hearing has been applied. Sound level meters are designed to indicate the A-weighted sound level in units called decibels, on a meter face as the sound level changes with time. The decibel scale is a logarithmic scale based on the pressure of the sound waves, and a unique aspect of the scale is that almost any sound increasing in level by 10 decibels (dB) will be judged to have approximately <u>doubled</u> in perceived loudness. Thus, a passing truck causing a maximum A-weighted sound level reading of 85 dB will seem twice as loud to the average listener as a bus at 75 dB.

Likewise, a residence near a highway where continuous traffic causes a constant A-weighted sound level of 65 dB will seem twice as loud as one a block or two away where the reading is normally 55 dB.

Since the sound level at any given location within a community will with time, a way to determine an average level is necessary to easily describe the total sound environment at that point. One good measure of the average sound arriving at a point is the <u>equivalent</u> <u>sound level</u> (L_{eq} - see glossary for technical definition). The equivalent level of fluctuating environmental noise over a given period is a single value representing the noise for that period. For example; the L_{eq} of the 8 minutes of recorded fluctuating noise shown in Figure 3-1 is 50 dB. The figure also shows short, but loud,

9

Saraha malan berti dari balan ser dan ser dari bertan bertan bertan bertan berta berta berta berta berta berta

intrusive sounds such as aircraft or individual cars, and the <u>background</u> ambient sound level, which is the "background" level composed of many indistinguishable sounds.

To completely assess a community noise environment, the entire 24-hour period must be considered. To describe 24 hours of community noise at a particular location with a single value, the quantity daynight sound level (Ldn) has been devised. Ldn is the same as an equivalent sound level for 24 hours of fluctuating sound, except that the levels measured during the nighttime hours of 10 PM to 7 AM are increased by 10 dB to account for increased sensitivity to sounds at night. One way to estimate the L_{dn} value for a particular location would be to take sufficient sound level readings to estimate the equivalent sound level for each hour. The Ldn can then be computed for the 24 hours, including the 10 dB nighttime weighting. Figure 3-2 shows values of Ldn obtained in various cities using similar procedures and associates a qualitative description of "noisiness" with L_{dn} ranges. An advantage of using the Ldn measure in a community noise evaluation is that accurate correlations between Ldn value and community reaction to noise have been widely made for community type sounds. Figure 3-3, based on several European and American studies, indicates the degree of annoyance and community reaction that can be expected as the Ldn value of typical community noise rises.

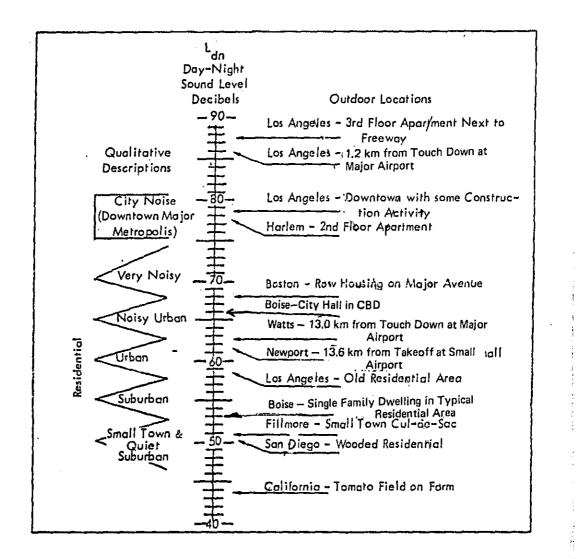


Figure 3-2. Outdoor Day-Night Average Sound Level, L_{dn} - in Decibels at Various Locations

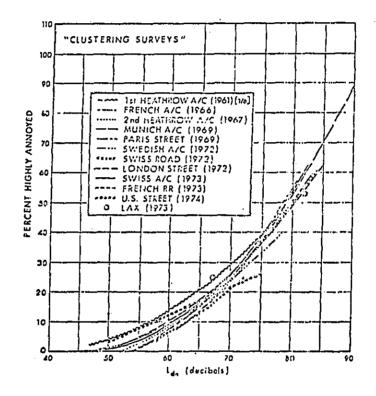


Figure 3-3. Summary of Annoyance Data from Eleven Surveys that Show Close Agreement. Two Points from a Recent Study of Aircraft Noise Annoyance at Los Angeles International Airport (LAX) [From Reference 2]

4 PROGRAM STRUCTURE

The community noise measurement program in Boise was carried out under management and guidance of the U.S. Environmental Protection Agency, with field work arranged by the Ada Planning Association. The program proceeded in four phases: identification of program goals and study area, selection of measurement sites, field team organization and field monitoring, and data reduction and analysis.

4.1 Goals and Study Area

As the program's purpose was not only to assess the community noise climate in Boise, but also to evaluate various survey and analysis techniques for general application in community noise surveys, more data collection and manipulation was performed than is ordinarily necessary for a community noise study. The study area therefore included almost all the land area within the city limits. Some areas to the west were neglected due to lack of development and similarity to other included areas, but the survey boundary was extended beyond city limits in areas of new developments or possible annexation which were of interest to planners.

4.2 Measurement Site Selection

Two basic types of sites were devised to survey noise over the wide ranges of land use and noise exposures in the city. These sites were supplemented with special sites providing supplementary supportive data.

Basic Sites

Two types of sites provided the basic project data - interior sites representative of the community in general, and roadway sites representative of the environment along major streets. The interior sites were arranged according to a north-south grid pattern with 540 m (1/3 mile) grid spacing. This pattern produced 266 square cells 540 m (1/3 mile) on a side covering the entire study area with the measurement point selected as close to the cell center as possible. Sound level measurements were taken at all of these sites. Roadway sites were located adjacent to surface streets and limited access highways. 40 sites were selected along high volume (ADT>18,000) medium volume (18,000>ADT>6000) and low volume (ADT<6000) roads to assess the noise environment with useful accuracy. (See Appendix A for sample size rationale).

Supplementary Sites

Two additional types of sites were used to provide supplementary data: 24-hour sites and quiet period sites. 10 sites for placement of 24-hour monitoring equipment were selected throughout the city to obtain a record of hourly sound level variation. These sites were generally located at homes of people associated with the project for convenience. Quiet period sites throughout the area were visited between 1:30 and 5:30 a.m. on a typical night to quickly spotcheck minimum noise levels during the quietest hours. Approximately half

14

الرجحا فيهجون الالا موسكان الماد والمجدعات الاسما مسافلا والمايع خدمة

of these sites were co-incident with interior, roadway, or 24-hour measurement sites.

4.3 Noise Measurement Methods³

į,

ためないないので、ためで、このないないないというない。

5.0

Principal data for the study were obtained from the basic sites located on the 1/3 mile (540 m) grid or along roadways. All measurements made at these sites employed the same procedure. Different procedures were used at the 24-hour and quiet-period sites.

Basic Sites -- 20-Minute Measurement

At each interior or roadway site, sound level readings were continuously made for a 20-minute period sometime between the hours of 9 AM and 5 PM during weekdays. Monitoring assignments were selected for efficient personnel usage, and this resulted in the measurements being uniformly distributed throughout most times of the day. A total of 10 days were spent with one to three measurement teams in the field each day.

For each 20-minute measurement period, the A-weighted sound pressure level was monitored using an ANSI Type II sound level meter set for slow meter response. Every 15 seconds, the instantaneous meter reading was observed and the value recorded as a tick mark in a space for the appropriate level on a standard data sheet. In this way, approximately 80 sound level values were recorded during the 20 minutes at each site for subsequent computer reduction. At each of the 15

15

second intervals, any sound level meter readings from local sources which caused the reading to exceed 70 dB were described on the data sheet by a special notational code which identified the source.

Field personnel consisted of Ada County Planning Association employees, local college students studying environmental sciences, and volunteer high school students. All participants were given thorough instruction and demonstration regarding these specific sound measurement procedures. Field teams of two were organized at first to facilitate timing, reading and recording, but with a day's practice, a single person could easily manage the technique.

Special Sites

Twenty-four-hour measurements were made using a community noise analyzer which automatically determined the equivalent sound level for each hour. EPA personnel set up this equipment which was self-operating for the measurement period.

The quiet period nighttime measurements were made by a trained acoustics technician using an ANSI Type I sound level meter having a minimum reading ability of 30 dB. With the meter set for slow response, it was observed for 30 seconds and the estimated central tendency of the meter reading was recorded. Care was taken to exclude the effects of local events such as automobile passbys or dogs barking.

4.4 Data Reduction

The data from each of 307 20-minute measurements consisted of approximately 80 individual sound level meter readings. Primary reduction of these data was done by the Boise Center for Urban Research a group affiliated with Boise State University — using a FORTRAN IV program to calculate L_{eq} and other measures for each site based upon the 80 readings for each 20-minute measurement. The L_{eq} values for interior sites were then divided according to five types of land use. This yielded a set of L_{eq} values from sites representing each of the five land use categories plus low, medium, and high volume roads. The mean for each set of L_{eq} values was hand-calculated resulting in an average daytime L_{eq} for the following types of areas:

53.7 dB - Residential

62.9 dB — Commercial 54.2 dB — Industrial 65.4 dB — Airport Influence NET 40 Zone 57.7 dB — Airport Influence NET 30-40 Zone 52.5 dB — Parks, Open or Undeveloped Space

65.9 dB —	High Volume Roads	
64.0 dB —	Medium Volume Roads	Road Traffic Volume
54.2 dB —	Low Volume Roads	

An approximate conversion from sverage daytime L_{eq} to L_{dn} , which represents the 24-hour noise environment, was developed based on the 24-hour data. (The L_{eq} to L_{dn} conversion is described in Appendix B.) This conversion was then applied to the average L_{eq} values to determine L_{dn} for each land use area. The resulting values are presented in Section 5.

An advantage of the on-the-spot sound level meter technique is that the field teams are able to note those local sources which are loudest or occur most frequently. The identifiable sources causing the regular sound level measurement to exceed 70 dB were counted in a special portion of the data sheet and the raw data were manually tabulated to determine the relative frequency with which the various noise sources caused the measurement to exceed 70 dB. These results are also shown in Section 5.

The 24-hour data were directly transcribed from the community noise analyzer to tables and then to 24-hour charts which are included in Appendix E. The data for the quiet nighttime levels were manually recorded average values of the A-weighted sound level as observed for 30 seconds and required no reduction.

5 RESULTS AND RECOMMENDATIONS

5.1 Results and Conclusions

Shown in Figure 5-1 are the average L_{dn} values for various land use categories that were within the survey boundaries. Comparison of these average levels with the interpretive scale which was shown on Figure 2 in Section 3 reveals that the average Day-Night Sound Level for residential areas is considerably lower than one might expect for a city of Boise's size, where many residential areas closely adjoin commercial areas or busy streets. However, it is also evident that noise in the industrial, commercial, and central business districts has crept to the same disturbing levels encountered in many urban areas.

Industrial and Commercial Areas

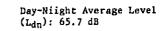
It is apparent that in Boise, the principal noise source outside of the airport influence area is street traffic. The average L_{dn} value for roadway measurement sites selected along roads having an average daily traffic (ADT) volume greater than 6,000 vehicles per day corresponds quite closely to the L_{dn} from interior sites located in commercial or industrial areas. This indicates that vehicle traffic probably accounts for the high sound levels measured in these areas, and that traffic volume increases can be expected to increase the average L_{dn} accordingly.

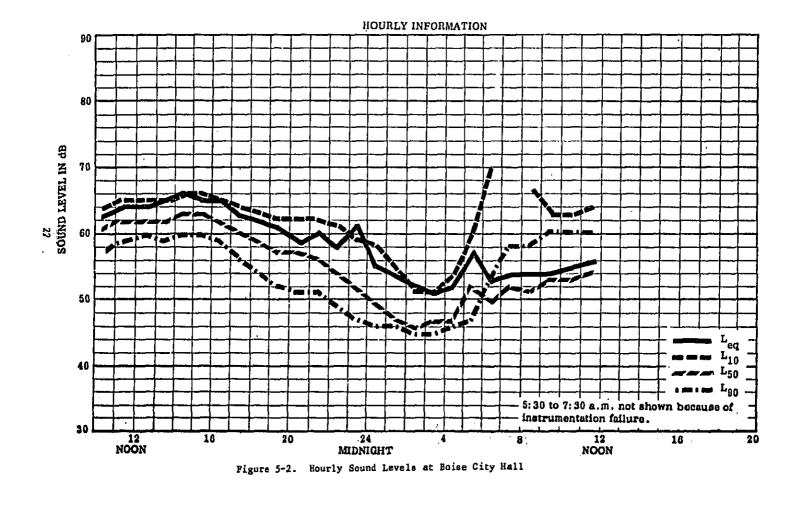
19

Land Use Category	No. of Sites	Mean Day-Night Average Sound Level (L _{dn})* in dB	95 % Confidence Limits, dB
Central Business District	5	66	>+5
Commercial/Industrial	37	62-63	+4.5
Residential	170	54	+1.5
Parks/Unused/Open Adjacent to Roads	24	53	<u>+4.5</u> +1.5 +5.5
> 6000 ADT Adjacent to Arterials	35	63-66	<u>+</u> 3.5
< 6000 ADT	6	54	+5.5
NEF 40 Zone	13	66	+5.5 >+5.5
NEF 30-40 Zone	17	58	+4.5

j

Table 5-1. Average Sound Levels for Area Types Surveyed With 20 Minute Interior Measurements


*Approximately value from 20 mm measurements during day,


Central Business District

The average L_{dn} for the central business district (CBD) shown in Table 5-1 has a value as high or higher than that of any other land use. Figure 5-2 shows the hourly equivalent sound levels of a 24-hour measurement made at City Hall in the heart of the CBD. Observation of the area indicates the primary sources to be traffic and construction noise. The continuous nature of these two sources during the day is indicated by the regularity of the L_{eq} line. This is particularly true during late morning and afternoon where high L_{eq} levels are consistently maintained, indicating a continuous high volume of traffic flow. Even after this period and into the middle of the night, the hourly L_{eq} decreases only 13 dB. This is a much smaller decrease than normally occurs for other land use areas in Boise (as will be seen), and indicates a concentration of traffic in the CBD at all hours.

Residential Areas

The average L_{dn} value for roads with an ADT of less than 6,000 vehicles per day is the same as that for residential interior sites. This indicates that on the average, local traffic sound levels along residential streets equal those generally prevailing in residential areas. Thus, any increase in local traffic volume would be expected to immediately cause increases in the average residential sound level. The difference in average L_{dn} values between residential and industrial/commercial areas of almost 10 dB indicates that residential areas are not yet extensively crossed by Summary of sound levels at City Hall - January 10, 1977

roads of ADT greater than 6,000. This is a situation which should be preserved to prevent imposition into residential areas of the much greater sound levels measured for roads with ADT over 6,000. Figure 3-3 indicates that such imposition could instigate significant community action. Figure 5-3 shows the general trend of sound level data taken along roadways in Boise as compared with ADT, and illustrates how the sound level of a residential area might increase as it becomes criss-crossed with roads of ADT greater than 6,000.

A further correspondence between current residential L_{dn} and the L_{dn} of roads carrying an ADT under 6,000 is revealed by the 24-hour data. Figure 5-4 is a plot of hourly L_{eq} values measured in a residential area near the open foothills of the eastern city limits. (See Appendix F for a complete set of the residential 24-hour data taken.) Figure 5-5 is a similar plot of data taken at a site along a wide surface boulevard leading through the older residential north section to newer subdivided sections of the city which are expanding into the foothills to the northeast. The boulevard - having an ADT under 6,000 - shows low sound levels late at night, beginning to rise at 6AM with a morning peak, and rising again to a fairly constant level which tapers off during the evening to the low nighttime levels. The residential pattern of Figure 5-4 is similar with the noticeable exception of pronounced peaks around 5 and 7PM. It is likely that these peaks correspond to returning home and evening traffic, and thus the importance of vehicle noise to the residential noise climate

23

มสามสร้างการแกรมโลยแปลสามาร์สมัยไป หรือไปประกอบรายในการแปลไปประกอบสมบันสมบันไป (การในสมบันไป) (การไปประกอบไปปร เป็นสามาร์สมบันสามาร์สมบันสามาร์สมัยใน หรือไปประกอบรายในการแปลไปประกอบสมบันสมบันสามาร์สมบันสามาร์สมบันสามาร์สมบั

1.1.1.1.1

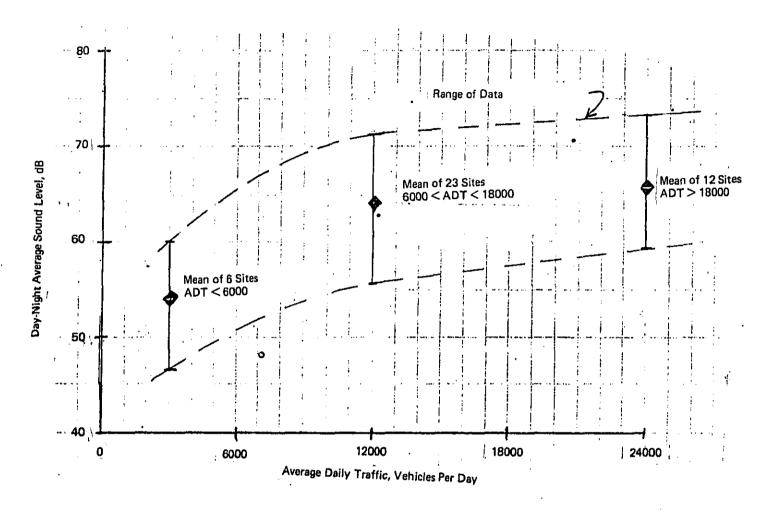
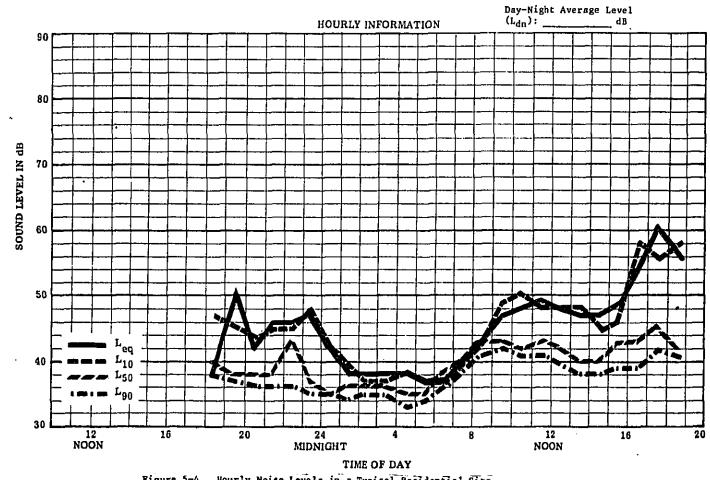
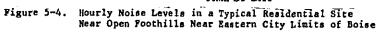
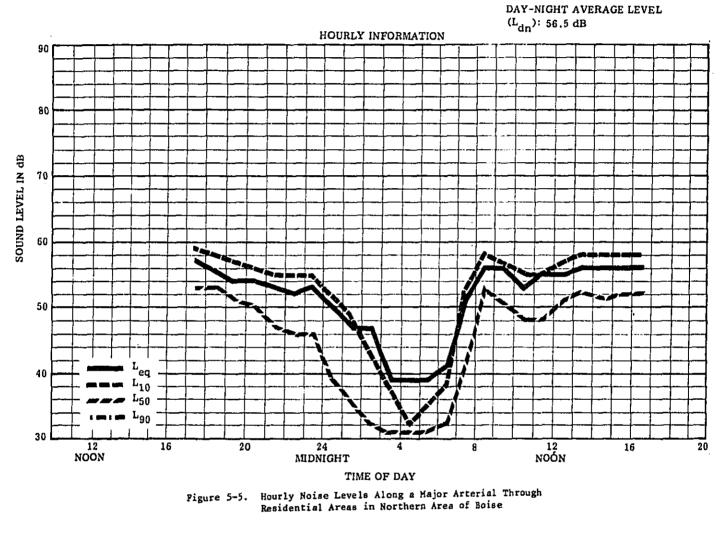





Figure 5-3.00 Sound Levels Adjacent to Major Roadways in Boise

.

is demonstrated. Changes in the sound levels or use-patterns of motor vehicles will immediately and directly affect residential sound levels.

Parks and Open Space

For simplicity, all open space, including parks, undeveloped land, and agricultural land has been considered as a single land use category. As indicated in Table 5-1, the average L_{dn} for all these areas is low, but not extremely so for a city like Boise. In actual fact, the sound levels measured throughout these areas were widely distributed between extremely quiet and excessively loud areas. Thus, the sound level at each individual section of open space reflects the levels of surrounding sources or land use. <u>On the average, the levels are just slightly higher</u> than those for residential areas.

Airport Influence Area

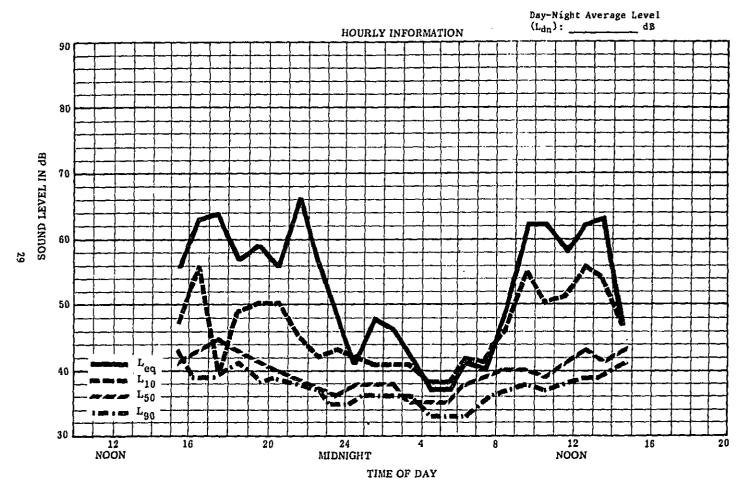
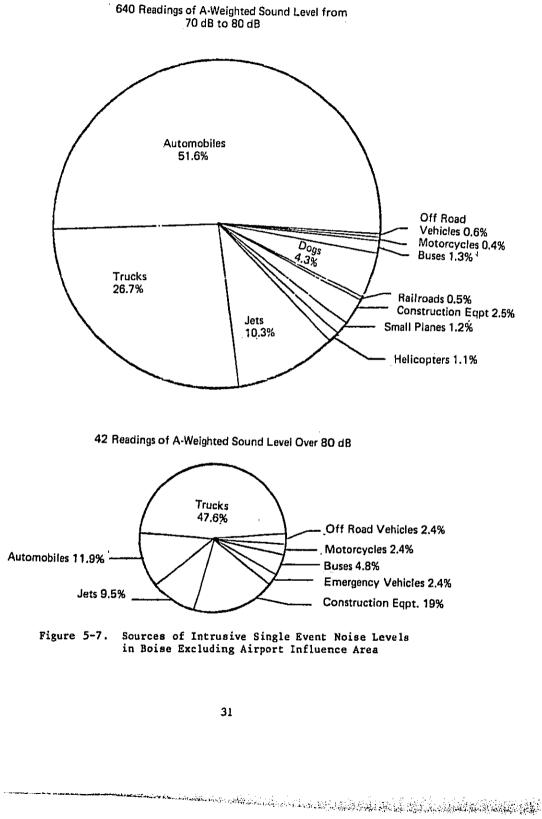

Several of the regularly spaced interior measurement sites were located within the airport influence area to the north and west of the runways. Since measurements among these sites were made during several different days, allowing for several different flight patterns, it is assumed that the resulting data approximately represent the airport influence area.

Figure 5-1 shows the area within the present Noise Exposure Fore-Cast (NEF) 40 contour* to have a high average L_{dn} similar to commercial

*NEF contours were previously developed in the report "Boise Airport Influence Area Study" for the Ada County Council of Governments.

and industrial areas. The nature of the noise is quite different, however, in that it consists of periodic loud but short duration overflights occurring in an otherwise quiet region. Figure 5-6 illustrates this with hourly L_{eq} values for a 24-hour period measured near the edge of the NEF 40 zone off the west end of the runways. The L_{eq} line, which is an indicator of the total acoustical energy received each hour, is quite high indicating the presence of high noise level sources. The L_{10} line, which indicates the sound level which was exceeded only 10 percent of the time during each hour, is far below the L_{eq} line. Thus, the sources which presented the large amounts of sound energy (aircraft) were present much less than 10 percent of the time. A similar but less dramatic pattern would be expected in the zone between the NEF 40 and NEF 30 contours (NEF-30 zone), where a lower average L_{dn} is evident.

Reference to Figure 5-1 clearly indicates that average sound levels within the NEF 40 contour are much higher than would generally be acceptable for residential areas in a city of Boise's size and density. The introduction of typical local industry, however, would not be expected to change the average L_{dn} for the area which is determined by the noise from aircraft overflights. Thus, industry in the NEF-40 zone would exist with an average L_{dn} similar to that of other industrial areas in Boise. It is possible that the loud single events (flyovers) might cause occasional interference with some industrial activites where speech communication is involved. Along the same lines, introduction of high volume streets in this area will not appreciably raise the average L_{dn} . For



ν.,

the NEF 30-40 zone, the average L_{dn} is significantly higher than that for other residential areas. In this zone, indoor environments would be marginally acceptable for residential use but with attention to construction details (such as proper fitting and sealing of wall panels, windows, and other building elements), would be nearly equal to those of residences in other areas. The outdoor environment, however, would be noticeably less desirable. This indicates a possibility for housing, such as planned unit developments or condominiums which do not feature the private yards and local outdoor living opportunities of the singlefamily residences found in most of Boise. The introduction of streets with ADT greater than 6000 to the NEF 30-40 zone would increase the local L_{dn} and also the residual sound level between overflights.

Major Sources

Figure 5-7 shows the relative numbers of various sources which could be identified as causing the A-weighted sound level to exceed 70 dB during most of the 20 minute measurements. The figure is for the entire study area, excluding the airport influence zone, and indicates - not unexpectedly - that autos and trucks most frequently cause high local sound levels. A more detailed examination of vehicle sound levels is presented in Figure 5-8. This shows that the apparent A-weighted sound levels of automobiles throughout the community are closely grouped, with few cars being much noisier than the bulk. Thus, a noise regulation or enforcement program

.....

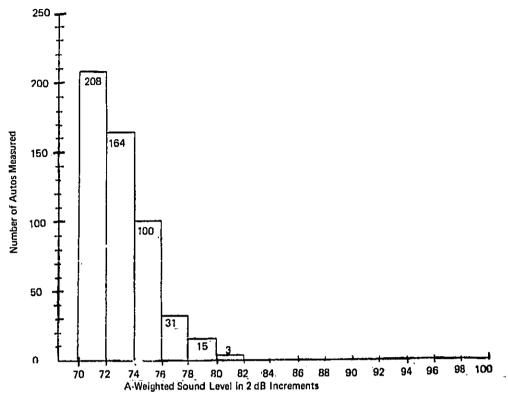


Figure 5-8. Distribution of Automobile Sound Levels Above 70 dB Measured at Various Community Locations in Boise

for cars would probably not cause a significant reduction in automobile traffic noise levels unless virtually all of the cars were made quieter. However, as illustrated in Figure 5-9, one to two percent of the trucks with measured sound levels exceeding 70 dB were significantly noisier than the majority. This suggests that a noise enforcement program for trucks to insure adequate muffling and reasonable operation within city limits could result in a noticeable reduction in truck traffic sound levels along truck routes. Figure 5-10 shows that in the airport influence area, jet aircraft join trucks and autos as a frequent source of high sound levels. It is interesting that even at very high levels over 80 dB, trucks constitute nearly as many intrusions as aircraft.

32

The second se

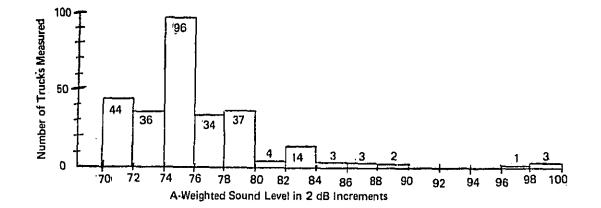
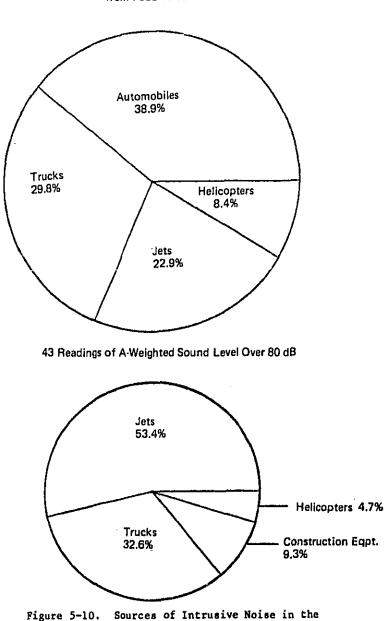


Figure 5-9. Distribution of Truck Sound Levels Above 70 dB Measured at Various Community Locations in Boise


This implies that the airport area average sound levels may be more sensitive to increased truck traffic than indicated in Section 5.1.5.

5.2 Recommendations

The natural silence of the Boise Valley has not been completely eliminated within Boise city limits by modern activities. Late at night, when the movement of people is at a minimum, the extremely low A-weighted sound levels shown in Table 5-2 were measured. Such low levels, averaging 37 dB, are <u>never</u> achieved in many metropolitan areas, and serve to illustrate the real opportunity that the City of Boise has to preserve its peaceful environment. The following recommendations, based on the sound survey, will help area planners prevent the increase of sound levels throughout the city.

33

nessen herren her

131 Readings of A-Weighted Sound Level from 70dB to 80dP

34

Boise Airport Influence Area

.

Table	5-2
-------	-----

Minimum Sound Levels Found in Boise

ε

ي در جاري از اير رو ومختر خاريد

Time	Site Also Used As 24-Hour Site	Site Address	Average A-Weighted Sound Level for 30 Seconds, d8	Land Use
0135	1	Elmer & Eugens	38	Residential
0155		Hill Road	39	Residential
0200		2715 28th Street	35	Residential
0216		Clover & Moora	39	Park, Open Space
0219		501 Rose Street	37	Residential
0227	×	Harrison	42	Residential
0233		Highland View and Heather Place	34	Residential
0241	x	8ih Street	34	Residential
0245		Frenklin & 11th Street	29	School, Open Space
0251	×	1050 Krall Street	39	Residential
0305		529 Bocon	30	Residential
0308		207 Louisa	33	Residential
0315	×	City Hall (No. Side)	51	CBD
0324		1916 Lorch	33	Residential
0335	x	2800 Frya	22	Residential
0347		9801 Skycliffe	32	Kesidential
0355		Edna & Dalton	37	Residential
0404		2951 Dolton Ln	34	Vacant
0412	1	Preece of Dead End	36	Agricultural
0419	×	711) McMullen	38	Residentia
0425		6603 Holiday Drive	41	Residential
0439	ľ	Victory & Engleson	4	Vacant
0445	ĺ	4256 Banner Street	38	Residential
0458	1	Nez Pierce & Taggart	36	Residential
0509	×	217 Redfish Lane	44	Residential
0520		2801 Harmony Road	31	Agricultural
0525	1	Boise & Holcomb Road	36 -	Agricultural
0534	l	1308 Euclid	39	Residential
0549		Julia Davis Park	40	Park, Open Space

Mean = 37.3 dB St. Deviation = 4.5 dB

Industrial and Commercial Areas

Since average sound levels in these areas result principally from road traffic, the growth of traffic volume should be limited to those roads bounded by compatible land use zones. This is particularly important for commercial areas where greater volume will readily increase sound levels to which the public is exposed during routine nonoccupational activities. In some cases, it may be desirable to direct traffic to several streets at lower volumes rather than a few principal streets at high volumes.

Residential Areas

Average sound levels in residential areas are also closely tied to road traffic and thus traffic volume along local and collector streets should not be allowed to grow markedly. The use of arterials through residential sections intended to carry high traffic volumes (>6000 vehicles per day) should be discouraged, or coupled with provisions for compatible land use or buffer zones (or sound barriers) along the road.

Parks

In order for park areas to provide visitors the tranquility of the quiet natural environment of Boise, they should not be located adjacent to commercial or industrial areas, or roads with ADT approaching 6,000.

Airport Influence Area

The area within the NEF 40 contour is presently compatible with nonresidential activities such as most industry, agriculture, or rangeland use. Traffic growth, including heavy trucks to supply industry, will increase average sound levels by a small amount. The NEF 30-40 zone is suitable for the same activities as the NEF 40, and also commercial and/or shopping areas. Growth in surface traffic volume - especially to the 6,000 vehicle per day level - will noticeably increase average sound levels. If residential development is contemplated for areas within the projected 1992 NEF 30-40 zone construction should provide a noise reduction of A-weighted noise levels at least 5 dB greater than that of typical construction in other areas to assure a comparable interior environment. It would also be desirable to arrange the housing so as to minimize the need for outdoor activities; for example, by providing covered communal recreation areas.

Major Sources

To remove some of the most intrusive roadway sounds, a vehicle noise enforcement program could be instituted to reduce the sound levels produced by heavy trucks. An enforced requirement that the Aweighted sound level of a vehicle not exceed 86 dB at 50 feet when operated on a surface street would be consistent with regulations in effect in other cities and states, and would result in a reduction in sound level of approximately the loudest 2 percent of trucks operating in the city.

37

and a stand with a second of the second of the

REFERENCES

 Impact Characterization of Noise Including Implications of Identifying and Achieving Levels of Cumulative Noise Exposure, Henning von Gierke, Task Group Chairman, U.S. Environmental Protection Agency, July 27, 1973.

;

1.5

- Schultz, T.J., et al "Recommendations for Changes in HUD's Noise Policy & Standards, Appendix B - Social Surveys on Noise Annoyance -A Synthesis" Bolt, Beranek and Newman Report for U.S. Housing and Urban Development, Report No. 3119R, November 1976.
- Wyle Research "Community Noise Monitoring A Manual for Implementation" for U.S. Environmental Protection Agency, Report WR 76-8, July 1976.

Manager and a second second

GLOSSARY

٩

A-Weighted Sound A sound level determined using the "A" fre-Level quency weighting of a sound level meter which selectively discriminates against high and low frequencies to approximate the auditory sensitivity of human hearing at moderate sound levels. Measures such as Ldn and Leq, which are developed in terms of A-Weighted sound levels, have been widely correlated with degrees of community noise impact and annoyance.

Day-Night Sound L_{dn} is a calculated single number which describes Level (L_{dn}) environmental noise for 24 hours based on the average energy content. It is often calculated by averaging the energy content of all hourly L_{eq}'s. (See equivalent sound level.) To account for increased nighttime sensitivity to noise, the L_{eq} values for the nighttime hours (2200 to 0700) are increased by 10 dB for the calculation.

Decibel (dB) A unit for describing the amplitude or level of acoustical quantities - see Level.

41

and the second state of the se

Equivalent Sound Level (L_{eg})

A measure which describes the sound level of a time period of fluctuating environmental noise with a single number. L_{eq} is an average level based on the average energy content of the sound rather than average sound level. It is the constant sound level which would contain the same amount of acoustical energy as the fluctuating level for the given period. When reporting L_{eq} values, the time period over which the noise is averaged must be specified; for example, for measurements taken over an 8 hour period, the equivalent sound level is expressed $L_{eq}(8)$. These measurements, and the resulting L_{eq} values, are A-Weighted, unless specifically designated otherwise.

Frequency The number of sound pressure fluctuations per second of a particular sound expressed in hertz (cycles per second). Frequency is the property of sound that is perceived as pitch.

Level

A scale for describing the amplitude of acoustical quantities. In environmental acoustics, usually ten times the logarithm (base 10) of the ratio of an acoustical quantity which is proportional to power (i.e., sound power, sound pressure squared,

المستقوقات والمستعدية وتقاربات التقاوي والمتقادين أستقادت أستنقص المتشارين والمستعدين والمستعلم وتستعد والمستع

sound intensity, etc.) to a reference quantity of the same kind. The value is assigned the unit decibels.

Background AmbientThe sound level which exists in the absence ofSound Level.any local identifiable sound sources. Usuallyperceived as a background rushing sound of manyindistinguishable sources.

Sound Level The instantaneous sound pressure level in decibels defined as $L_p = 10 \log (p^2/p_{ref}^2)$ where p is the acoustic pressure and p_{ref} is 20 micropascals. In practice, this quantity is measured in decibels directly with a sound level meter, usually applying the A-weighting network of the meter (see A-weighted sound level).

Statistical Sound Level (L_y)

しいしいかい おおん いんたい

5

The sound level which is exceeded for a particular percentage of the time during a given period. The percentage of time exceeded corresponds to the subscript for each metric. For example, the L_{90} of a period of environmental noise is a low level exceeded 90 percent of the time, but the L_{10} is a higher level which was exceeded only 10 percent of the time.

43

And the state of the

APPENDIX A

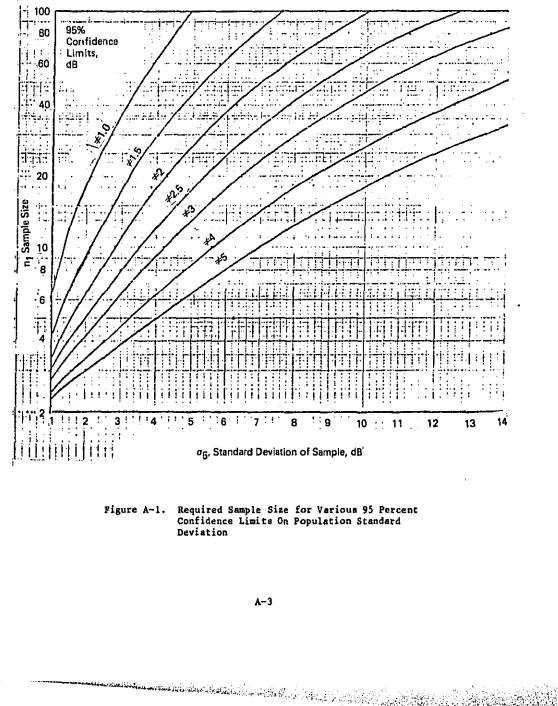
SURVEY METHOD

PLANNING

From the point of view of deriving information, the survey was classified into two types of sites -- those representative of the community in general and those representative of highway impact. From the planning perspective, it was necessary to develop two separate site selection techniques to characterize these different types of sites.

To characterize the community in general, the city and surrounding areas were divided into 54 1.6 km (1-mile) square sections each corresponding to an official section as used in the standard surveying scheme. The survey boundary did not include all of the 54 sections. Using section maps having a scale of one inch to 200 feet, each section was divided into a three-by-three matrix thus producing nine cells of equal area. In residential areas, the closest street to the centroid of each cell was located and the measurement site located at the edge closest to the centroid. The actual measurement point was located by applying one of two criteria. If a building was located at the site, the measurement point was located 2 meters (6 feet) in front of the building and 2 meters (6 feet) from the edge opposite the driveway as shown in Appendix D attached. If there were no building located at the site, then the measurement point was located 15 meters (50 feet) back from the curb.

A-1


Initially all cells (originally 360) within the survey boundaries were to be measured. Owing to resource limitations, the size of the survey was reduced in area such that only 266 were measured.

The method for selecting sites along roads having medium traffic (i.e., the average daily traffic (ADT) flow is between 6,000 and 18,000 vehicles) and for roads having high traffic (i.e., the ADT was greater than 18,000 vehicles) as follows.

First, for each road category (i.e., medium and heavy traffic), potential sites were located along each road at approximately 13 km (12 mile) intervals. For medium traffic roads, 222 potential sites were identified. For high traffic roads, 50 potential sites were identified. Assuming standard deviations of sound levels along the medium and high traffic roads of 5 and 3 dB respectively, the required sample sizes were determined by referring to Figure A-1. Thus, to be able to generate mean sound level values with 95 percent confidence that they are correct within ± 2 dB, medium traffic and high traffic samples of 27 and 11 measurement locations would be required respectively. Again, due to resource limitations, different sample sizes were actually obtained and the standard deviations of the measured data were slightly different than assumed. Actual sample sizes are given in Appendix B. Owing to particular concern for low volume streets, additional measurement locations adjacent to various local streets (ADT <6,000) were also selected.

A-2

محمد والمجرورة التكرير مدينة تحلب الأربي المترور والمرسوي بالمكر المح

ş ł

The actual microphone locations for road measurements were obtained moving 2 meters (6 feet) in front of any building located on the site or 30.5 meters (100 feet) away from the curb for high traffic roads, or 15.2 meters (50 feet) away from the curb for medium traffic roads.

TEMPORAL METHODS

The survey utilized two temporal techniques: manual 20minute samples and automatic 24-hour samples. The former technique was utilized to generate statistical data and derive the L_{eq} 's for a 20-minute non-peak traffic period. It required the collection of data by personnel (either APA, EPA or City staff, Boise State University students or Borah High School students) who at each site measured the A-weighted sound level using an ANSI Type II sound level meter set to slow response. At the end of every 15-second interval, the instantaneous meter reading was recorded. For levels less than 70 dB, the level was tallied by placing slashed lines corresponding to each occurrence in the appropriate 2 dB-wide sound level band on the data sheet (see Appendix D). Above 70 dB, source codes rather than slashed lines enabled a means of source identification. Thus each observer constructed a distribution of the sound levels, indicated the sources of all events over 70 dB, and noted general comments on road conditions, source environment, and any other pertinent input.

A-4

المواج حور فرود والمالي والترفق والمؤولة المروسة ومقالتها وروار والمحت زعاه وما وحدياتهم ومعا

Three Metrosonics dB 602 Community Noise Analyzers automatically collected the 24-hour data. The units were located at 10 locations throughout the city. To provide equipment security and AC power, the measurement locations were flexible; however, all locations were visually unobstructed from the street. The community noise analyzers were set to collect the following information on an hourly basis -- L_{eq} , L_{10} , L_{50} , and L_{90} .

ANALYSIS

The 20-minute samples were coded onto computer cards and processed using the computer program listed in Appendix B. The 24-hour hourly data were directly read from the community noise analyzers. L_{dn} was calculated by a separate computer program from the hourly L_{eq} values.

A-5

APPENDIX B

DATA REDUCTION AND ANALYSIS

This appendix provides supplementary and background material to sections 4.4 and 5.0 of the report. Data handling or analysis details not fully covered in those sections are presented here.

Data Reduction

1.1

Approximately 24,560 individual sound level readings were made during the 20-minute measurements throughout interior areas or along roads. These readings were reduced by computer to a few useful average values. For each 20-minute measurement, the computer produced one page of information including:

- o Equivalent sound level (L_{eq}) for the 20-minute measurement period.
- o Sound level distribution of sources exceeding 70 dB
- o Time of day of the measurement
- o Land use of the measurement area
- o Exact measurement location coordinates.

An example reduced data page is shown in Figure B-1. The computer program which was used is included at the end of this appendix.

Using the land use or site codes of the printed output, the data were separated into the area categories shown in Table B-1, each cate~ gory containing the indicated number of 20 minute samples. In each category, the numerical means of the L90 and Leq values for the

B-1

ne star hanne i se se hanne i star og a som i bere star i se som i

	SIT		12	5 T	AR 11	٥ <u>s</u>	07	ġЧ	Fł	EĒ	WAY		5)	EETS		1												-				
	***	***	***			**						***	***						***	***	****		***	***	****			***	** **	****	****	
	1		H	aus	163	1	IF.	AH/	11	ON		1	25 1	ARDS	FF	ton P	"RE											5	AN 1	1 19	77	
l M GE	NEAL NEAL	L.	FR <u>5</u> CO#	Ea/ 45) 11/	45 60	TR -1 ND	4 F7 6 A F 2 - C		1G -	ра #	G 9 -	CHA TE M	INS/ PER/	W-FRI	2C×	-67	c ,	52 14 X W	0 9) pe	ED =		5.	(K	TS)							
	Γ^{*}		<u>م</u>	8 2		N	UM9 C	ER	۰	d	ccu	ARE	NCES	i																		
· B-2	· ·		111111222223333333334444455545555555555777773335533533344	222244720000000004044440000000000000000			0000			0-0000000000000000000000000000000000000		000000000000000000000000000000000000000		000000000000000000000000000000000000000																		
	TOTA	4. P						PL	3		a	1																				
	•		11119994	8		7775411		F	ig	ur	e 1	31.	. H	educ	ed	Dat	a P	rom	20	0-M	inu	te	Мел	88 U	reme:	nt f	Site	•				
1		ំគ				• •		7																								

Table B-1

Summary of 20-Minute Measurements Taken Between 9:00 AM and 5:00 PM in Boise

Type of Site	No. of 20 Minute Samples	Mean LgO (Ave. Residual)	^{Mean L} eq (≃L _{dn})	Standard Deviation of L _{eq} Values	95 Percent Confidence Interval of Mean L _{eq} Rased on (Figure B-2)
		<		- dB	>
Residential	170	42.1	53.7	8.56	+ 1.5 + 2.5 + 5.5 + 3.5 + 2 + 4.5 >+ 5
Commercial	26	52.7	62.9	5.75	+ 2.5
Roads < 6000 ADT	6	37.7	54.2	5.12	7 5.5
Roads > 18000 ADT	12	57.0	65.9	5.11	- 3.5
Roads 6000 <adt<18000< td=""><td>23</td><td>51.1</td><td>64.0</td><td>4.31</td><td>+ 2</td></adt<18000<>	23	51.1	64.0	4.31	+ 2
Industrial	11	51.6	62.1	6.27	+ 4.5
Central Business Distr	rict 5	55.8	66.4	6.23	>7-5
Parks/Open Space	24	44.1	52.5	11.89	+ 5.5
Inside NEF 30 Contour	17	45.2	58.2	8,65	+ 4.5
Inside NEF 40 Contour Total	<u>13</u> 307	46.4	65.9	12.65	> 5.5

Man Marine State and a state of the state of the

• · · •

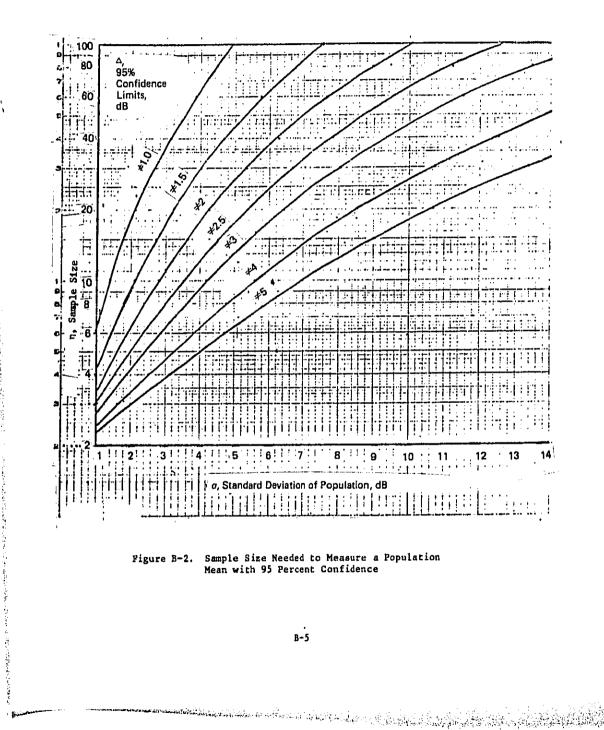
20 minute samples were calculated, along with the standard deviation of the L_{eq} values. These are also tabulated in Table B-1 and were the principal reduced data used for analysis.

Data Uncertainty

The survey technique used in Boise contains two principal types of data uncertainty - sampling error and measurement error.

Sampling Error

In each land use area, a finite number of 20 minute samples was taken to estimate the mean L_{eq} for the area. The sample size (number of 20 minute L_{eq} values) necessary to estimate the actual area mean L_{eq} to within a certain confidence interval with a specified confidence is related to the standard deviation of the population of all possible 20 minute L_{eq} samples. In order to be sure, with a specified degree of confidence, that a sample estimate of population mean falls within a given confidence interval, $\pm \Delta$, it is appropriate to apply the equation:


 $\Delta = t\sigma \sqrt{n}$

where: t = the confidence parameter (from a student's "t" distribution) which depends upon the degree of confidence desired in the sample and on the sample size

 $\sigma =$ the standard deviation of the population of all possible samples (in this case, of all possible 20 minute L_{eq} values) and

n = the sample size.

A graph of this equation is shown in Figure B-2.

ı, ١

This figure was used as explained in Appendix A, to estimate desired sample sizes for the land use area categories based on a standard deviation estimate for each category. These desired sizes were not always reached, however, due to logistical and manpower difficulities. Thus it was necessary to determine the confidence intervals for the sample sizes which were achieved. These were obtained from Figure B-2 using the standard deviation of the sample as an estimate of that of the entire population. These estimated confidence intervals for a 95 percent confidence level are given in Table B-1 for each land use area category.

Measurement Error

The 20 minute measurements were performed by manually reading a sound level meter at 15-second intervals. Uncertainty in these readings is provoked by calibration accuracy, meter accuracy, and reading accuracy. Although all field personnel were trained in the use of electronic sound level meter calibrators, insufficient calibrators were on hand for assignment to every field team. Thus, some teams were unable to check calibration at regular intervals throughout a day of measurements. For these teams, the meter was calibrated at the beginning of the day, and this calibration was checked upon the team's return. In general, these beginning and end checks indicated the meters to have maintained calibration within 1 dB even with the varying low outdoor temperatures. This may have been partially due to the consistent use of fresh batteries. Meter and reading accuracies can be considered together. The accuracy of

B-6

a Type II sound level meter required by ANSI Standard S1.4 - 1971 when indicating A-weighted levels of community noise is no worse than plus or minus 1 dB. Also, since instantaneous "anapshot" type readings were often required while the meter needle was moving (slow meter damping), it is judged that reading accuracy was no better than plus or minus 1 dB. For both meter and reading accuracies, however, there is no reason to expect that the errors would be biased toward the plus or minus side, since several different combinations of meters and observers were used. Thus no significant fixed error would have been induced into either the calculated L_{eq} for each 20 minute sample or the calculated mean L_{eq} for a group of samples representing a land use category.

Uncertainty Summary

Works.

The confidence with which the mean values of the measured samples represent the true community noise level mean values was determined using Figure B-2 and is expressed in Table B-1. Uncertainty of the measured samples due to sound level meter calibration was seen to be insignificant. Measurement errors due to instrument or reading errors are presumed to be randomly distributed about the equivalent or mean values, and therefore will not significantly alter the calculated equivalent sound levels or their means. Hence, measurement uncertainties do not degrade the confidence intervals and levels established by the eample sizes selected.

B-7

a new second in the second and a start a start and a start and

Table B-1 shows that the mean L_{eq} values determined for almost all areas of the survey are within 5 dB of the actual population means with 95-percent confidence. In particular, the mean noise levels in the important residential and medium to high volume road areas have been determined with an especially narrow confidence interval. Thus, the confidence in principal data is sufficient to allow the conclusive interpretations of Section 5.0 of the report.

Leq(8) to Ldn Conversion

The principal survey data for each site consisted of the L_{eq} for a 20-minute period between the weekday hours of 9:00 AM and 5:00 PM. Each land use area within the city contained several such sites, and their 20 minute samples were uniformly distributed throughout the 9:00 to 5:00 period. Thus, for each land use area, the 20 minute L_{eq} values could be arithmetically averaged to estimate, with a certain confidence, the average L_{eq} in the area for the 9:00 to 5:00 period. (The confidence in the average $L_{eq}(8)$ estimation is developed elsewhere in this appendix.) A method was then developed to determine the average L_{dn} for each land use area based on this average $L_{eq}(8)$.

The method for determining the L_{eq} -to- L_{dn} conversion was derived from the 24-hour sound level measurements, which gave hourly L_{eq} values for several locations around the city. From these values the L_{dn} and the $L_{eq}(8)$ from 9:00 to 5:00 were calculated for each site. This allowed a direct and accurate comparison of the 9:00 to 5:00 L_{eq} with the L_{dn}

B-8

er werden werden in der einen werden einen erste auf der eine Beiter geste Beiter eine Berteilen der Beiter aus

for these sites. The 24-hour results were then separated according to land use, yielding an assessment of the difference between 9:00 to 5:00 L_{eq} and L_{dn} for each type of area. These differences are shown in the fourth column of Table B-2, where it can be seen that, on the average, the magnitude of this difference is always much less than 1 dB.

It was then assumed that the differences between the average $L_{eq}(8)$ and L_{dn} values measured at the 24 hour sites are representative of the differences between the average measured L_{eq} and the true average L_{dn} for the 20 minute sites. This was made based on the similarity between microphone locations, measurement periods, and measured 9:00 to 5:00 L_{eq} for the 24 hour and 20 minute measurements. Thus, the average values in column 4 of Table B-2 are adjustments which may be applied to the average L_{eq} data from the 20 minute surveys in order to estimate average L_{dn} .

From the above, it is seen that the differences between average daytime L_{eq} (9:00 to 5:00) and L_{dn} for Boise are much less than 1 dB in all areas. (It is presumed that a similar difference exists for parks and open space, which were not included in 24-hour measurements but are similar to residential areas.) This is in accordance with a major previous study which indicated that, for areas with L_{dn} less than 55 dB, the nighttime L_{eq} is typically 10 dB below the daytime L_{eq} .* This

*Information on the Levels of Environmental Noise Requisite to Protect Public Health and Welfare With an Adequate Margin of Safety, U.S. Environmental Protection Agency, March 1974

Table B-2

Leg(8),dB (24-hour Ldn,dB (24-hour Ldn - Leq(8),dB (24-hour Average Leq(8),dB (20-minute Land Use measurements) measurements) measurements) measurements) 2.2 2.6 59.3 57.1 Residential 45.4 43.4 51.5 51.7 53.6 -2.1 53.2 -1.5 $\frac{54.3}{52.3}$ 0.4 54.7 53.7 Averages: 55.5 1.0 56.5 59.7 60.7 58.6 -1.7 -1.1 -0.6 Arterial <6000 ADT 58.0 59.6 54.2 Averages: -60.9 Airport Influence 60.4 -0.5 58.2 to 65.9 CBD 65.7 65.3 0.4 66,4

Differences Between $L_{eq(8)}$ (9:00 AM - 5:00 PM) and L_{dn} Calculated from Weekday 24-Hour Measurements in Boise

c

مستعملهم والمستعمل والمستعمل والمستعمل والمنافية المتعالية المتعالم المعادرة والمستعمل والمعاصر والمستعمل سيتع

would cause the calculated L_{dn} value to just equal the daytime L_{eq} as is the case on the average for Boise's quiet areas. The previous study also showed that, as L_{dn} increased from 55 to 65 dB, the difference between daytime and nighttime L_{eq} would decrease to 4 dB, which would permit the nighttime values to dominate the L_{dn} calculation (when the 10 dB weighting is added) and cause the L_{dn} to exceed the daytime L_{eq} . It is apparent that in Boise this does not happen. In areas of Boise with a high L_{dn} , the nighttime levels apparently are not great enough to increase the L_{dn} , but remain at a level sufficiently low to keep L_{dn} approximately equal to daytime L_{eq} .

It is concluded that the approximate difference between the daytime average L_{eq} determined by the 20-minute surveys and L_{dn} at the same site in Boise should be zero. This is particularly reasonable in light of two final relationships. First, the 20-minute survey measurements themselves are probably accurate to no more than plus or minus 1 dB, but the average differences between the 24-hour $L_{eq}(8)$ and L_{dn} values are on the order of only one-half dB. Second, the 95-percent confidence intervals for the average L_{eq} values derived from the 20-minute measurements are much larger than the above one-half dB differences. Thus the differences between $L_{eq}(8)$ and L_{dn} resulting from the 24-hour measurements are very, very small when compared to the normal 20-minute survey uncertainty, and do not represent a significant adjustment.

B-11

JA Salira

Lauren al Laine Barren an Cale and an anna an Charles anna anna air an Artaine an Artaine Artaine

Development of Noise Zones

General

Via the data manipulations previously described, Ldn values were obtained for areas of various land use within the survey area. The land use codes used to categorize the data for interior measurement sites were assigned to the sites by an Ada County assistant planner. Thus, accuracy of the land use assignments was assured. To indicate these assignments and corresponding sound levels on a city map, a photograph from a Landsat satellite was used. This photograph indicates the predominant land use for each one-sixteenth mile square in the area by color. (The predominant land use for each square is deduced by the satellite based on the reflected and radiated light characteristics of each type of land use.) The Landsat photo of the Boise area was simplified by the Ads County Staff to limit the total number of land use types indicated. It is believed that the land use assignments made by the assistant planner correspond well with the land use interpretations of Landsat, and that the Landsat photograph is an accurate pictorial display of the land use categories for which Ldn values have been established.

Additional areas were added to the Landsat photograph to show distinctive sound patterns not directly related to land use. The central business district core is represented as a separate commercial area defined by the area's intense commercial buildings, activities, and

B-12

معالی از این از معالی می از می است. مسلح مرکز می این از می است از می می از می می از این از مان از می این می است می می از معالی می از می می می می از traffic. The airport influence area is shown based on NEF-30 and NEF-40 contours prepared in a previous airport study. Noise zones that are shown along roadways have widths determined according to the following procedure.

Highway Noise Zone Boundary Determination

The following Table B-3 can be used to roughly estimate the width of roadway noise influence zones along roadways in the Boise area. This may be desirable where local planning or complaint difficulties arise. The table is based on the mean L_{dn} values determined for roadway and interior areas, and on a nominal attenuation of 4.5 dB per doubling of distance from the roadway. It was assumed that, for the Boise sound survey program, the average measurement distance from the roadway edge was 15.2 m (50 ft) for roadway sites. The outer edge of the roadway noise influence zone is taken to be the location where traffic sounds from the subject road cease to measurably increase the average L_{dn} for the surrounding type of area.

Table B-3

Roadway Noise Influence Zone Approximate Widths

	Zone Outer Edg	Half Width-Roadway To ge-Without Buildings*
Roadway ADT	Residential/Parks	Commercial/Industrial
< 6000	24.4 m (80 ft.)	No Influence
6000 - 18000	58 m (190 ft.)	24.4 m (80 ft.)
> 18000	67 m (220 ft.)	36.6 m (120 ft.)

*If buildings are present lining the roadway, the influence zone width will equal, either the building setback plus the building length, or the above distance, whichever is smaller. See text.

B-13

To determine the influence zone width for a given roadway, note whether there is a continuous line of buildings along the road. If so, the influence zone will generally not extend beyond this first row of buildings. For high volume roads in residential areas, some influence may be apparent at the second row of homes, particularly if the size of the spacing between the first row buildings approaches the average building width. If buildings are not present close to the road, or if the spacing is greater than building width, then the zone widths given in Table B-3 for the various traffic volumes and land uses apply. In general, the roadway noise influence zone widths should not exceed those given in the table.

Data Reduction Program

The data reduction program (Figure B-3) was written in FORTRAN by the Boise State University Urban Research Center. This program is based upon a data reduction program developed by the EPA Region VI office in Dallas, Texas.

and a second second and an an and a second second and a second second second second second second second second

DO I DATART	14 300	DN-F0-474			AINPGN		DATS		15/77	TINE	12.5	1434	
0031		DIMENS	LON RUÁ	18(18):	112(1)1	ND4(50)	NDDV	362259	8(55)	LDBA(35), 0(24), 2),5ect(2),			
		2504030	501.50	ND1 (50)	SUNDELSC	SUNDI	(50).0	128(5)	SITIC	2). SECT(2).	,	PAGE	0001
		31MPACTI	()) .CO4	4(9).15/	V(15.3).	SOURCI	5.31					FRWS	
0002		DIMENS	ION WEA	THE 10+24	+3) HTAD(24)	•							
1033 1034		PEAL	ON DAY	5(10)+1	MTAD1243								
005		TNTEGER	DITAG	AYS		•							
0006		DATA 0/	175/1	0 11	12.,	13***	14195	151.1	181,34	• •/			
0007		DATA T	4T A H Z 1		4		9.,10.	+11++1	213.	.141516			
0035		1 + 1 7 + 1 4		4042.10	22. 23.	215441	11 2 1		4/1 3	• /			
	C						******		*****				
	Ē 1	THIS PROC								LDB AND 99			
	C+++4	********	*****	*******	*******		******	******	*****	**********	*		
0007		1000/11× KKK=50											
511		LLLSKKA	(+5										
	C REA	VD IN THE	E NUMB⊈	R OF DAY	'S NOT TO	EXCEED	10 +						
0012	-	READ [1 a	80003	NDAYS									
0013	6000	FORMAT(123										
0014		DD 8010	N=1.N	DAYS					•	INFORMATIC			
	C RE	AD IN A	CAROS	PER DAY	AHICH CO	NTAIN T	HE 24 (HJUR W	EATHER	INFORMATIC	N		
0015	C NC	ITE: THE IEN	UATS N	USI UE I	N ORDER	AND THE	DALA	of HOU	n AUST	BE IN ORDE	: M +		
0016		0.00	NI#1	د .									
1017		-N1#((NI	-13+0)	ί.									
010		N2=N1+7											
1019	8030	- HEAD(L)	90 30 7 L	3 • 0 • F 3 • 0	****		41 1 15 1						
021	8040	CONTINU											
022	8010	CUNTINU											
1252		NJAYAL											
024		50 649 SUM-130 (K K									
1326		SUNDILL											
0027		SUM0211	}#D.										
1923		SUNDALI											
3029 3030	840	TOTH 30 P	<u>.</u>										
0031		70701=0											
0032		TUM02+0	•										
0.33		TO TO 3 = 0											
034	2000	CONTINU WAITA(3	. 731										
535		READ(1,	A .E ND H	20013 MA	CH . I SERN	0.0P22.	1111-55	CT.15	10				
7250													
0638 1339	4	PURMATE	<u></u>		ZA3.121 No.0000.								
240	11	FURMAT	11	CHINE =	· A1 .2X.	SERIAL	NO -	16.2%	· OPER/	TOR(S) =*•			
	••	1544.24.	1317E	.2AJ.2	X. + SECTI	UN #1+2/	3.2X .	SIC #	• 12)				
241		- NL 40(14	101 464	1973 *191	12112410	1.133.40	IN. DAY.	YEAR					
042	10	PORALI	14.124	A2 . 344	,								
044	50	FORMATC	100444		******	*******				*********			
	,	24898484	*****	******	*******	*******		14 # J 👘					
245		WRITE (3,51)	LSITELI	1.1=1+13)							
1046 1347	51	PONMATE -	2.521	TE = 1	JANJ Vear incl	1/2 4							
048	52	FSAMATI	34.740	TE E 3	YEAR . NCA	HSHCETS	=,143						
049		WRITE (3,50)										
050		IDATE=D											
351		LD0 99 H											
252 353		LOUA(4)	A O										
954	99	CONTINU	F.										
055		DO 100	MaleXK	۲. I									
253		CONTINU		•									
357 359	100	SUNIO-0	-										
359		SUNSGUD											
040		SUM⊈ Q≠0	•										
051		KSUNAO											
062		MAAX=0 MAIN=50	a										
~ ~ ~			-										

Figure B-3. Computer Program Used for Initial Data Reduction

B-15

and all consistences and a second block birth and a second branch to a block brith the second branch with the s The second second branch br

ار میرو در مراجع

-Ten

10- - - O

- V.4. 1911

005 FORTRAN	IV 360N	-FC-479	3-9	MAINPGM	DA.	12/15/77	TINE	12.55.34
0064		NCASEFI						
0065 0055		T5=00,00 TF=00.00						
0067 0069		K04Y±0 N1GHT=0						
0359	1000	CONTINUE						
0070 0071		WRLTE(3. WALTE (3	121 1001 NCASE	(SITE(1),1=1,1	31 . MON . DAY	.YEAR		
0072	60	FORMAT() PEAD/1.1	X .13 .5X .10H	(SITE(I).I=1.1 Hourly informat Ase(I).I=1.0)	[DN+5×+134	4,344/3		
0074	12	FJRMAT(2	5.2.7A4.42)				
0075 0075	41		33. JAA3					
0077	47	WRITC(J. Fodyatii	42] IMPACT #	1.944)				
0077		WRITELJ.	131 CD4H	COMMENTS =* .944				
0040	43	READ(1+1	3) (ENVIR(1	1.(=1,18)	,			
2600								
0033		READ(1.9	SOJ (SOURCE	(1).1=1.12)				
0354	C 400	READ	ÎN NU4BER D 4) (NJ0ER D	F SAMPLES				
0085	44	PORMATES	5[2]					
0097 0035	45	READELAS	5) (([SAVE1	+J)+SOURC([+J]+.	J=1•3]•[=1	.5)		
0099	• •	READ(1 A	AL CELSAVES	+J).SOURCEI.J).	J=1.3).I=9	.15)		
0040		00 43 14	1(12+A1)) 1+15					
0092	1	N=35+1 NDB(N)=0	•					
0374		D0 47 J4	1 . J JD (N)+1 SAV(•				
0393 0346	47 (CONTINUE	38 (NF+15AV(1131				
0097	45 (CONTINUE	.611 TS.TE	+ (CASELLI + L=1+6)	•			
0093 -	61	PORVATIS. Do 8050	х.бниссь =.	3X+F5-2+1H-+F5+2	2+1 0X+8A4 3			
0133		17 { D A Y + C !	0.0XYS(1))	GO TO 8050				
01 02 01 03	1	CUNTINUE WRITZ(3,	9955) ICOUN	T. SI TI				
01 34	8055	F3P4AT6*		SNIT WATCH THE	TABLE', IX	. COUNT H' I	3+1×++\$1	te.
01 05		CALL POU	NP [DAY DAY	10.0AYS[1].0AYS[103.03			
0106		16(15,66.	*I [HTAB(J)}	GQ TO 8080				
0105 0109	8070	CONTINUE						
0110	8075	PORMATCI	A. TIME DOE	SNIT HATCH THE	TABLE . LX	COUNT # *.	13.1X.'S	IT
0111		CALL POU	TP (TS,TS.O	*TINTABELD*TIME	0(24).0)			
	C CHAI	NGE TENP	RATURE TO	CELS IUS				
5110	6080	TEMParts	5./9.)+(32.	-WEATH(1.J.2))				
0113	02	117213.0	52) dEATHLI	-WEATH(1.J.2)] ,J.1).TEMP.WEATH .4X. CUNDITIONS	(1113)	TENDEDITUDE		
0114	02 1		IND SPEED	KI	3343	164PERATURE		
0115	QAL P	AR TE(9 708947(3)	98]) (SOURC (1246]	#1.24.F3.0.1 (KT E(1).J#1.12)				
0116 0117 0118		RITE (3	631	-SIHNUNGER OF OG	7-100 FM*FR			
	C	P4141	T GUT AMPLI	TUDE DI STRI BUTIC	N	•		
0119	c '	17 BR 00	1,35					
0120	c '	√S=2+N-2						
0121	· .	T=NS+2		103-0				
0122	i	AITE (3	1.LE.0) NDB 71) NS NT	NDA(N)				
0124	98 0	DO 7111 N	1836.50					
0125	1	=N-35						
0127	ĥ	15=2+N-2						
	Figure		Computer P	TOOTAN Urad for	. Taiti-1	Data Baduat		
	- Bare	, ⊔ -3,	computer P	rogram Used for (Continued)	TUTFTUT	Dara Requei	100	
				(vonstinger)				
				B-16				

B-16

an da menanakan dalam dalam dalam kana dalam kana dalam d

İ

FORTRAN	IV 3	60N-F0-4	79 3-9	, MAINPGH	DATE	12/15/77	L THE	12.00.34
29 30		T# (NO	(1.71121 N	NDB(N)=0 5+NT+ND5(N)+(15A	vet_at_sound	1		
31	7112	2 FORM	T(81.13.1H-	-113+2×+15+3×+3(18+13+18+4113			PAGE 000
33	711	L CONTI FIEW	NUE 17[9K.]3.1H-					
34		72 F()RM/	ATC1X.2H)	TUTCH TUT				
35	c	73 FOR44 FIND 1	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	R OF SAMPLES FOR	THE HOUR			
15	•	15044	• 0					
37 38		15041	01 N#1+KKK =1504+N001N	,				
39	10	DI CÚNTI	NUE					
40		#H1TE 75 Fürma	(1(3x,26HT01	JM TAL NUMBER OF SA F OF TOTAL	MPLES = .1473			
12	¢		IND PERCENT	OF TOTAL				
3		AAL (2)=0.0l+1Su	14				
4		AAL[3 AAL[4)=J0.1+15UA					
ió .		AAL(5	5)= .9*[SUN	4				
7	c	AALCA	5)= .00+15UN SEARCH F	A For lmtn				
8	•	00 70	4 N =1.KKK					
19 10	70	IF(NO Di Conti	13 (N)-11 70 NUE	14+701+701				
	• c							
1	c	LHINE	2 * N-1					
52		A CONTI	702					
	с		SEARCH FOR	LNAX				
4	70	02 CONTI	NUE 13 N =1.KKK					
6		MDDak	KK-N+1					
7 6	70	IFIND ITACD 5		703+705+705				
	c							
9	c		2******					
0		60 10						
1	c	3 CONTE CALCU	LATE LN=N2.	5				
23	70	6 CONTI	NUE 2 MN=1+6					
٠		1503=	0					
5		DC) 70	17 NN =1+KKK K−NN+1					
7.			NOHI KKI+I SU					
5	70	a conti	UG-AAL(HH)) NUE	10141004100				
0	C		4)=-1_+2.=K					
	ç			· •				
1 2		GO TO 7 CONTI	102 NUE					
3.	iö	2 CONTI	NUS					
• .	C .	CAL CULA	TE LNP (GAU 1(3)-JAL(5)	SSIAN) AND THI				
5		NPLsJ	AL[4]+29+00	+00/60+				
6	c	- 10111-	A . CONTROL F	OR NIGHTTINE PEN F.GT.22.1 GO TO	IALTY			
7		16(19	+LT+7++34+T <day+1< td=""><td>F.GT.22.} GO TO</td><td>521</td><td></td><td></td><td></td></day+1<>	F.GT.22.} GO TO	521			
Ĵ.		DO 11	6 INLIKKK					
2	11	6 CONTI)≡ND8([) NU8					
2		60 10	525					
3	_د ² ۲	I CONTI	APPLY 1008	PENALTY FOR NIG	HT.			
1		NIGHT	=NIGHT+1 5 KL=1.KKK					
5,		レタョメレ	* 5					
7	11	LOBIL	NUE NOB(KL)					
Ş	52	5 CONTI	NUR					
	c	5	UMMATION OF	NUBER OF SAMPLE	S FOR THE DAY	r .		
	Pion	- B-3	Computer	Droman Hard 6	an Thitis N	ata Baducat	~~	
	L TRO	re B-3.	computer	Program Used f		ava Reducci	va	

 $(1^{k_1}\otimes \mathbb{R}^{k_1})(2^{k_2}\otimes \mathbb{R}^{k_2}\otimes \mathbb{R}^{k_2}) = (1^{k_1}\otimes \mathbb{R}^{k_2}\otimes \mathbb{R}^{k_2}\otimes \mathbb{R}^{k_2})$

ł

WARE DOING

and the set of the set of

16

(Continued)

B-17

DOS FORTRAN	1V 360)N-FU-4 /	5 3-9	MAINPGN	UA	11 ×18277	TIVE	12.55.34
0190 0191 0142 017 J	105	LOBA(J. 5 Contini		+LDBA(JJ) +LDBA(JJ)				4004
0114 0195 0195	c	1F(LMA) 1F(LM1)	SUM+15U4 X.GT.MMAX) N.LT.MMIN) T.UUT.LN.N	HHAXELHAX HHINELHIN C.S.INI AND	LNP (GAUSSIA	N}	PA 45	0004
0197 0143 0197 0200	-	WRITE WWITE WRITE	(3.76) LNA (3.77) JA [3,78] JA	X L(]} L(2) L(3)				
0201 0202 0203 0203		WAITE WAITE WAITE WAITE WAITE	AL (06+E) AL (18+E) AL (58+E)	L(4) L(5) L(6]				
0235 0236 0207	77	5 8084418 7 808441 5 8084418	(10%,7HLMA (10%,7HL) (10%,7HL)	x = 13)				
0204 0209 0213 0211	80 81 82	ГОЛЧАТ Голчат	(10x,7HL)0 (10x,7HL5 (10x,7HL4 (10x,7HL4 (10x,7HL9 (10x,7HL4	0 = .[3] 0 = .[3] 9 = .[3]				
0212 0213 0214 0215	64	FORMAT FORMAT WHITE	INTHO:XL1	= +#5+1) P (GAUSSIAN : IH) = .75.1)			
0216 0217 0218	c	VERO. UNNED.	COMPUTE	LAV AND HEAN				
0219 0220	c c	PP=2.1	LL =1,KKK 0(2,4LL=1.					
0221 0222 0223 0224		UNBX910 UNNEUN VEREKP	10.**PP -UNN 3*PP+10.	}}/FLOAT([SU	-1			
0225 0225 0227 0228	1 06	AV=10.*	/ER JE ALOGIO(UN/ ASEJ=JAL() ASEJ=JAL()	43				
0223 0730 0231 0232		ALED(NO SUMIORS	IASEJ#AV Su'410+AL10i	NCASE //LIDA	T(NCASES) T(NCASES)			
0233 0234 0235	c	50480#9 020#0.	SUP4CQ+ AL EQ1	NCASEJ/FLOAT SIGMA AND LNI	T(NCASES)			
0236	c c		2LL-11	VE) #FN#FN/FLQA'	T7 150M3			
0236 0239 0240 0241	107	0'10=07+ CONTINU SIG=SOR	-D00					
0242 0243 0244 0245	- 91	WR178(J WR179(J	1.99) LNP 1.071 AV 33.5HLAV	. #5 .1}				
0246	C + 1/	WRITE(3 WRITE(3 NSERTED	1.50} 1.73) 73 03 1 C/	SE PER SITE	ONLY			
0249	2001		TO STOP PC	M AT EOF				
0250 0251	2002	NCASE=N IF(NCAS	E.LE.NCASE	(1) GO TO 100	0 ************************************	*********	********	********
	č		FIN	ID PERCENT OF	TOTAL			

.

.

Figure E-3. Computer Program Used for Initial Data Reduction (Continued)

8-18

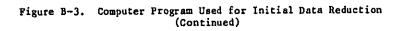
مستشمر والحافظ والمحافظ والمراجلة المراجلة والمراجل والمراجل والمحافظ والمحافظ والمحافظ والمعاد والمستعلم والمراجل والمعاد والموالي والمستعلم والمستع

محرب والرار وزواليطيط جديك

			**************	**************	***********************
52	C\$ \$\$	######################################		••••••••••	
53		A4L(2)=0.01+KS	UM		
54		AAL(31 = .1+KS	บพ		
55			.UN		
155			UN		
57		AAL(6)= +99+K5	UN		
	c	CALCULATE THE	LN.NE.S AND THE		
53		00 109 44=1+6 JSU4#0			
60		00 707 NH #1.K	KK		
61		*****			
62		J 5U3=ND341 KK)+	JSUB		
63		IF (JSUA-AALCHN	11 709+710+710		
64	710	CONTINUE JAL(44) #1.+2.#	~~		
65 66		GO TO 108			
67	709	CONTINUE			
63	105	CONTINUE			
69		TNI 0=4.#(JAL (3	1- JAL(5))+(JAL(5)	-30-3	
	C C	DHPUTE LAV AND 4	EAN		
70		AVE = 0+ DUNH=0+			
72		00 111 LL=1.KK	к		
73		PD4=0.1+f2.+LL	+1.)		
74		DBA=NDBA(LL)			
75		ミメアネニン・シャンド シレル	0.014		
75		DUN=EXPR#10.## DUNN#DUNN+DUN	PUR		
78		AVER #EXP9 +P3H#	10.		
79		AVE#AVE+AVER			
50	111	CONTINUE			
61		AAVEP-10.+ALOG	LOCOUNNE		
52	C C(LUNATE LON			
36		D3 119 LL=1.LL	L .		
54		PON=0.1+(2.+LL	+1+3		
:55		DBAL#L03A(LL)			
60		EDN=DUAL/KSU4	P-1		
97		LUX#EDN#10.4#P			
93	119	CONTINUE			
40	•••	LON=10.+ALOG10	{LUHN}		
	C F	IND SIGNA AND LN	P		
91		5570=0.			
92		D0 120 LL-1.KK	n 		
94		SSU-FLOATIND JA	-AVEL {LL}}#FN#FN/FLOAT	(KSUN)	
115		5507×550+5500			
70	120	CONTINUE	· ·		
97		SIGHA = SORT (550	9)		
98 79		LN9#44VER+2.56 #RITE(3:72)	-31 644		
52		- NR177(3,66) NO.	AV+15178413+1=1+1	D3 -NON -DAT -YEAR	
51	86		GYALTHOATLY INFOR	3 A T I DN 4 D X 4 1 D A U 4 J A 4 /	13
02		WR172(3.63)	TUDE DISTRIBUTIO		
	C.	PRINT OUT AMPL	TTUDE DISTRIBUTIO	N FOR THE DAT	
63		DO 97 N=1.KKK NS=2.+N+0			
04 05		NT=15+2			
35		HATTELS 711 NS	NT. NOBALN)		
ŏ7	97	CUNTINUE	•		
25		WRITE(3,72) WRITE(3,75) KS			
39		<u>- MR315[3+75] KS</u>	V.		
19		WEITE(3.76) MM. WRITE(3.77) J4	2215		
11 12					
13		#41 TEL 1.793 34	.(3)		
14		WRITE(3,80) JA WRITE(3,81) JA WRITE(3,81) JA	<u>ú(4)</u>		
15		WRITE(3,81) J4	L (5)		
10		WRITE[J:82] JA WRITE[3:83] M4			
17		- WO (TF? 3.44) 14	10		
19		ARITELS. ATT AA	VĒR		
20		WRITE(3.47) AA	AYANIGHT		
21		WRITE(3.88) LD			

Figure 8-3. Computer Program Used for Initial Data Reduction (Continued)

.


ģ.

B-19

1 August

PAGE 0000

322		WAITE(3,09) LNP
323		WRITE(3,72)
321	87	FORMAT(3%,6HLEQ = #F5,1)
125	89	FURMAT (3X, CHLUN# .F5.).5X. 174H 55 IS EPA IDENT-INTERFERENCE LEVEL. 75 IS EPA INDENT-HEARING
		1744 DD 15 2MA IDENISIAIEARERERE EEVEL. 75 15 6MA INDENISHEARIAG 20207. Leveli
326	89	FJRMAT(JX.6MLNP = .F5.1)
327	90	FORMAT(2X, 13HLON BASED ON +12+19H DAYTINE HOURS AND +12+16H NIGHTTINE HOUR
		11,45_40,435)
329		WRITE(3.50) Ekht=0.
330		
331		EX65=0.
332		EL43=9.
372		DQ 711 J≈27.KKK E x81 =NDJA(J) +EX81
334 335	711	CONTINUE CONTINUE
335		PGH1==X81/KSU4+100+
337		D) 712 J=24,29 Ex75=Ex75+NDBA(J)
729		EX75 = EX75 + NOBA(J)
339 340	712	CENTINUE Pů75#(Ex41+Ex75)/KSU4+100+
141		
342		Ex65=ND34(J)+Ex65
34 3	713	CONTINUE
344		PG65=(5×91)5×75+E×65)/KSUM+100-
345 345		PL65=190PG63 . D0 714 J=8.KKK
347		
345	714	CONTINUE
349		PL45=CL45/KSUM+100+
150		WRITE(1.72) P361
351 352		WAITE(3.93) MG75 WRITE(3.94) RG65
353		WRITE(1, 46) DL45
354	92	FORMAT(3X.15HIXCEEDS AL DOA .F6.2.20H PERCENT OF THE FIME.3X.
		143H 4.2 PERCENT (24HR) NDT ACCEPTABLE (HUD)) Format(3x,15Hexceeds 75 DBA ,F6.2.20H Percent of the time.3x,
355	93	FORMAT(3X,15HEXCEEDS 75 DOA ,F6.2.20H PERCENT OF THE TIME,3X,
356	94	147H 33.3 PERCENT (24HR) STRONGLY DISCOURAGED (HUD)) Forwat(34.15HR/CEEDS 65 DBA .F6.2.20H PERCENT OF THE TINE.3X.
		148H 313 PERCENT (ZAHR) NORMALLY UNACCEPTABLE (HUD)) Format(13:15HExceeds 45 DBA .F6.2.22H Pircent of the time.3x. 148H 33.3 Percent (Zahr) Normally Acceptable (HUD))
157	96	FORMAT(3x+15HEXCEEDS 45 DBA +F6+2+20H PERCENT OF THE TIME+3X+
155		148H 33.3 PERCINT (24HR) NORMALLY ACCEPTABLE (HJD))
357		#RITE(3.50) RI=0.
360		R2=0.
361		R3=0.
162		\$10=0.
163 344		530×0. 550×0.
165		DD 911 I41-NCASES
166		SI 0= SI 0+ (ALI 0(1)-SU 410)++2
197		\$50×\$50+(AL50(I)-SU450)+#2
163 167		SE0=SE0+(ALE0(1)-SUME0)+#2 R1=R1+(AL10(1)-SUM10)+(ALE0(1)-SUME0)
170		A 1 = 4 4 5 1 = 5 U + 5 0 + (A E C (1] - 5 U + E 0)
171		$P_3 = R_3 + (A_{150}(1) - SUM50) + (A_{11}(1) - SUM10)$
172	611	CUNTINUE
73		SIG # SUHT(SID/FLDAT(NCASES))
74		51350×994T(S50/FLOAT(NCASES)) S1650=504T(S50/FLOAT(NCASES))
175		REQIONAL (SIGINSIGEO)/FLOAT (NCASES)
177		FEU30=R4/(51630+516E0)/FLOAT (NCASES)
73		RIDSOX232(SIG104SIG50)/FLOATINCASES)
79		WRITE(3,412) RE010 WRITE(1,413) RE050
190		WHITELJALAJ MAUDO
41 32		WRITF(3.014) 81050 WRITE(3.015) SUMID
9.9		NAITE(3.416) SUMBO
34		WRITE(3.417) SUMED
45		WRITE(3,418) SIGIO
87		WAITE(3,619) SIGSO Waite(3,620) Sigeu
15	812	FURMATISX, 20HOURAELATION BET LIG AND LAVE, F7,3}
89	ěi š	FORMATISX.20HCURRELATION HET LSG AND LAVE.F7.3}
96	814	FURMATISX, ZHHCORNELATION BET LSO AND L1)=.F7.3)

B-20

and a second of the
PAGE 0007

;

4

Ì

ł

•

,

0391	815	FORMAT(SX.10HL1 FORMAT(SX.10HL5	Q(AVE) =+E7-3)				
0392 0393	B16 017	FORMAT[5%.10HLE	Q(AVE) = F7+3}				
0374	61A 619	FURMATISX.9HS1G FURMATISX.9HS1G	(10) =.F7.3)				
0396	820	FORMAT(5X.94SIG	{EQ} =+F7+3} .				
	C***		**************				
0327	C+++	IF(IDATE.NE.IDA	**************************************	**********	**********	*****	********
0793		D() 337 K=1*KKK	A (K))/FLOAT (KSJN)				
0400		5UMN 30 (K) = SUMN 3					
0401 0432	839	CONTINUE Go to 453					
0403	830	CONTINUE					
0404 0405		IF(IDATE+NE+IDA DD 841 K=1+KKK	727 60 10 831				
0406 0407		RATIG=FLOAT(NOB 50201(K)=50401(A(K))/FLOAT(KSUH)				
0409	841	CONTINUE					
0409 0410	831	GD TO 853 CONTINUE					
0411		1= (10A 12+ NE+ 10A)	Y3) GO TO 832				
0412		RATIO=FLOAT(NOB	A(K)) /FLOAT (KSUH)				
0414 0415	842	SUMD2(K)=SUMD2() CUNTINUE	KI +RATIO				
0415		GO TO 453					
0417 0419	832	CONTINUE IF(IDATE+NE+IDA)	r4) GO TO 833				
0419 0420		DO 943 K=1*KKK	KEN THE LOATERSUNT				
04 <i>2</i> 1		SUM73[K]=SUM73[I	KI+RATIO				
0422 0423	843	CONTINUE GO TO 953					
0429	833	CUNTINUZ WR[TE[]+834}					
0426	834	FORMAT (SK-41HDA)	TE HAS BEEN FOULED	UP - CHECK D	ATE GARD)		
0427 0427	853	CUNTINUE NDAY=NCACH					
0427		IF (HDAY+LE INDAY) WHITE (3+860)	5} GO TO 2000				
0471		DD 844 N=1 KKK					
0432		NS=2+N+0 NT=115+2					
0434			NT . SUMN30(N) . SUMD1	(N) . SUMD2(N)	SUND3(N)		
04 35		TOTA1=TOTD1+SUM	01 (N)				
0437 0438		TOTO 2=TOTO 2+ 5040 TOTO 3=TOTO 3+5040	3 (N)				
0439 0440	544 560	CONTINUE FORMAT(5X+3HDBA-	8X.12HNOV 30 1973	.8X.12HDEC	1 1973.8X	.12HDEC	2 1973.
0441	861	1 1973+8X+12HDEC	3 1973) +12+4(6X+F14+10))	•			
0442		WRITE[3,362] TO	N30.TOTD1.TOTD2.TO	1703			
0443	. 852	END	L=+4(6×+F14+10))				
	Rico	re B-3 Compute	r Program Used fo	- Tripici D		*	
	LIRO	ite b-5. compute	(Continued)	r initial p	aca Reduct	101	
			(oone indea)				
			B-21				

APPENDIX C

EQUIPMENT DETAILS

The two levels of temporal sampling used in the survey required two types of instrumentation. For the manually collected data, the observation teams employed ANSI Type 2 sound level meters (with windscreens) mounted on tripods. The sound level meters were calibrated prior to and immediately after each day's session utilizing a compatible acoustic calibrator. (Figure C-1 depicts the manual collection of data.) Quietperiod nighttime measurements were taken with a B&K ANSI Type I sound level meter.

The 24-hour surveys required a more sophisticated system. The noise signal detected by the B&K 4921 outdoor microphone system (Figure C-2) was fed into the Metrosonics dB-602 Community Noise Analyzer (Figure C-3) which digitized the data at a rate of one sample per second, classified the data into 100 bins each one decibel wide and computed the hourly L_{eq} , L_{10} , L_{50} , and L_{90} . The information was stored for an internal solid-state memory from which it was read out at the end of each 24-hour period.

The B&K 4921 microphone system contains a 1/2 inch air condenser microphone, assembled in a comprehensive weather and moisture-proof arrangement including windscreen, raincover, bind spike, and humidifier. Using the build-in electrostatic actuator, the system was calibrated at the start and conclusion of each 24-hour period. The microphone was connected to the community noise analyzer via a 30-meter cable.

C-1

j S

and the same

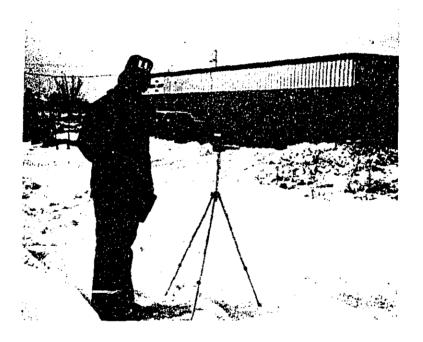
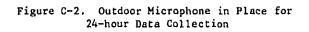
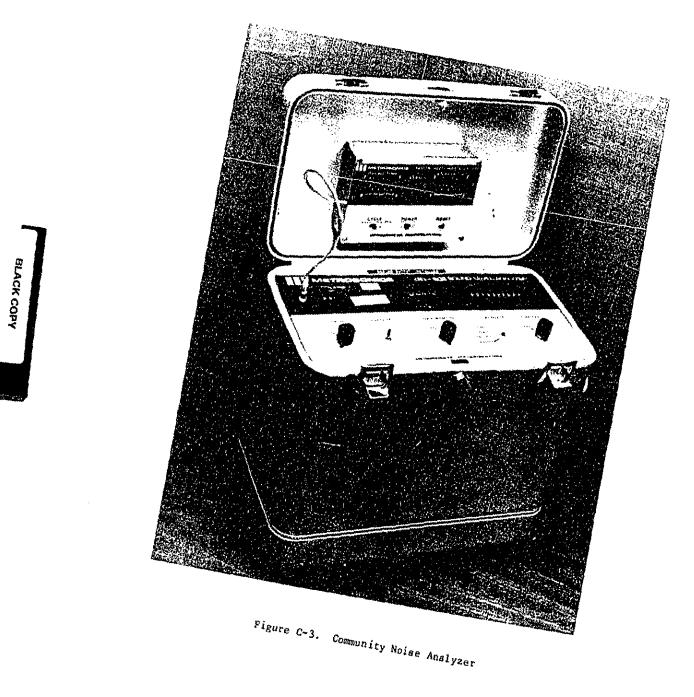


Figure C-1. Field Personnel Preparing to Collect a 20-minute Noise Sample Using Sound Level Meter

C-2


والمحالة المتركل والاحادة لأورينا فرادي المتحالة التواجر لأنكار والأم ومناطقات والمحمد محروما ومتربه المحمد

DI ACK COPY



אמטט איני יינ

ł

C--3

C-4

APPENDIX D

DATA FORMS AND INSTRUCTIONS

All project personnel who performed 20-minute measurements received personal training in sound level meter use and field data acquisition techniques. Only after this practice were instrument operators sent into the field. The written data collection package given to each operator or team consisted of:

- o Cover sheet indicating the exact 540 m (1/3-mile) square cells containing the sites to be measured.
- Complete list of procedures for obtaining and recording a 20-prinute sample of data at a given site.
- o Figures indicating preferred microphone placement for different types of sites (e.g., grid site, roadway site, etc.).
- An example data sheet showing correct procedures for completion and data logging.
- o Blank data sheets to be completed.
- o A large scale map upon which was marked the intended measurement location.

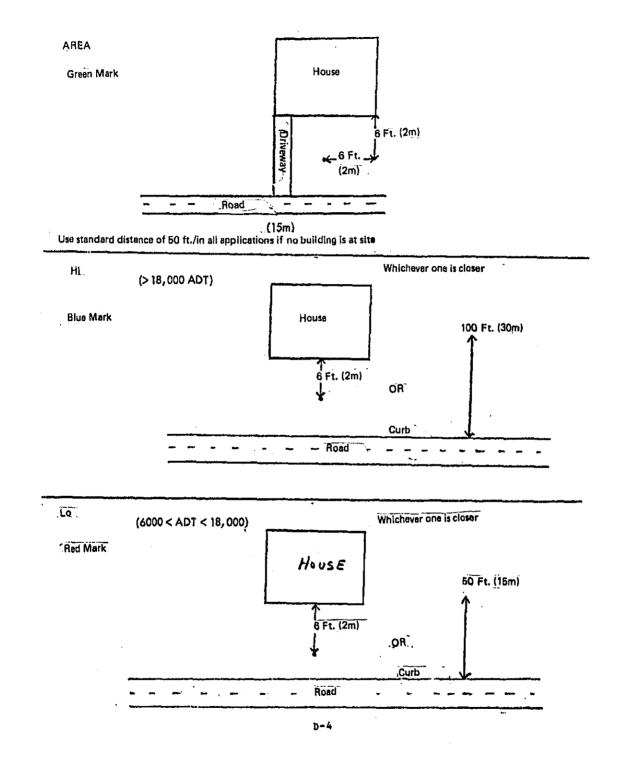
Examples of these items (with exception of the map) are presented in this appendix. Note that the data sheet easily allows the observer to record comments and a site sketch as well as sound level data.

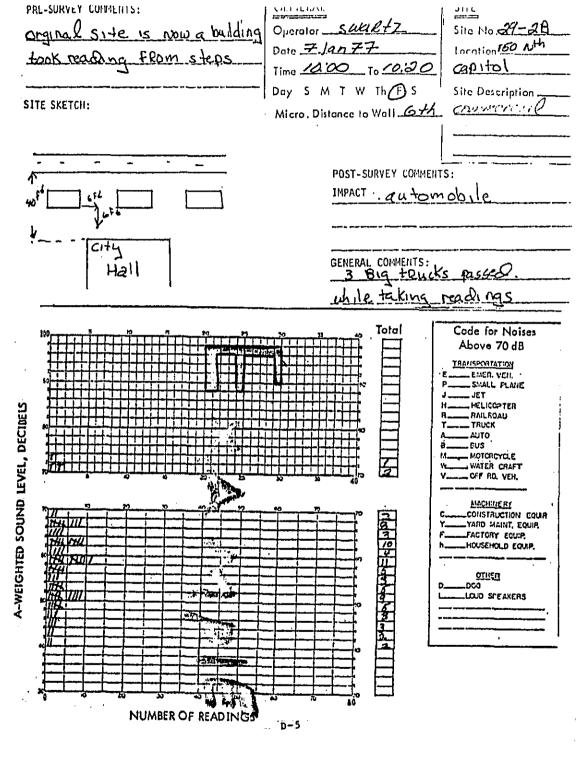
D-1

Telephone number for assistance: 384-4394	Section:	Cells:
	Section:	Cells:
	Section:	Cells:
Name :	Phone No:	
Name:	Phone No:	
Date:		

<u>SLM</u>:

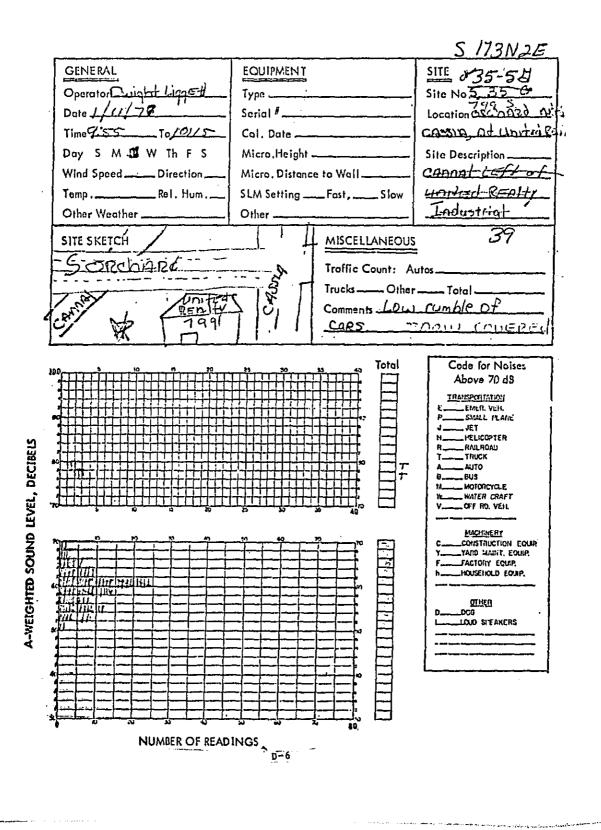
Model_____


TEST PROCEDURE


- Write name, date, and section number assigned in upper right hand corner of Data Log Book.
- 2. Locate site.
- 3. Fill in top part of Data sheet.
- 4. Set up tripod at test site. Make sure SLM is in a vertical position.
- 5. Make sure windscreen is on microphone.
- 6. Place weighting adjustment to A.
- 7. Place fast-slow adjustment to slow.
- 8. Turn meter on.
- 9. Set dB adjustments according to noise levels at test site.
- 10. Take dB reading every 15 seconds and record for a 20 minute period.
- 11. Turn off SLM at end of 20 minute period.
- 12. Total up readings on data sheet.
- 13. Fill in post-survey comments.
- 14. Move to next test site.

Ŵ

静静的


D-3

and a service of the second

م الم الم الم الم الم الم الم الم الم

-- -- -----

APPENDIX E

24-HOUR DATA

The 24-hour data obtained with the community noise analyzer are presented in this appendix. Note that the summary sheet (Table E-1) indicates that some of the measurements were repeated during different days at the same site. Following the summary is an individual tabulation and 24-hour graph for each site showing hourly levels of L_{eq} , L_{90} , L_{50} , and L_{10} , and daily values of L_{eq} and L_{dn} .

E-1

and a second and a second and a second s

おなれき、日前がよれの言語 人口的内容的にあれる

.

Summary of 24-Hour Measurements of Noise in Boise, Idaho, January 1977

•	St	<u></u>	Fin	Finish		L _d (dB)	L_ (JB)	L _{dn}	Land Use or Loca
Location	Day	Time	Day	Time	Leq (24) (dB)	(0700-2200)	(2200-0700)	(dB)	Noise Source
City Hall Roof (SW 3/4)	1/7 Fri,	1730	1/8 Sal.	1630	61.0	60.1	62.4	68,5	Rood .
City Hall Roof (SW 1/4)	1/8 Sat.	1730	1/9 Sun,	1630	59.0	56.5	61.2	67.1	Road
City Hall Roof (SW 1/4)	1/10 Mon.	1030	1/11 Tues,	0730	62.0	63.8	58.6	66.0	CBD
7111 McMullens		1530		1430	56.0	\$7.5	51,3	59.0	Residential
2040 Penninger	1/12 Wed.	1530	1/13 Thurs.	1430	59.0	61.1	49.1	60,0	Airport NEF 30-NEF 40 Boundary
2800 No. Frye	1/12 Wed,	1830	1/13 Thurs.	1730	43,0	44,1	37.0	45,0	Residential
2205 Horrison	1/12 Wed.	1730	1/13 Thors,	1650	34,0	55.2	43,1	57,6	Arterial < 6000 ADT
1814 Bih Street	1/13 Thurs.	1730	1/14 Ed.	1630	56.0	58,0	47,8	58.0	Arterial < 6000 ADT
217 Redfish Lone	1/13 Thurs,	1930	1/14 Fri .	1830	50.0	52.0	40,5	52,0	Residential
1050 Krall Street	1/13 Thurs.	1830	1/14 Fri .	1730	50.0	51,5	42,0	52,0	Residential
1814 Bih Street	1/14 Fri .	1930	1/15 Sat	1230	52.0	53.5	50.B	58.0	Arterial < 6000 ADT
1050 Kraft Street	1/14 Fri .	1930	1/15 Sat.	1330	47.0	47.3	46.7	53,0	Residential
1790 Hill Road Terrace	1/18 Tues,	1830	1/19 Wed,	1830	58,0	60.0	48,7	60,0	Arterial < 6000 ADT
300 Costin	1/20 Thurs,	1930	1/21 Ed.	1930	53.0	54,3	45.1	55.0	Residential

i

1

.

E-2

.

24-HOUR DATA SHEET

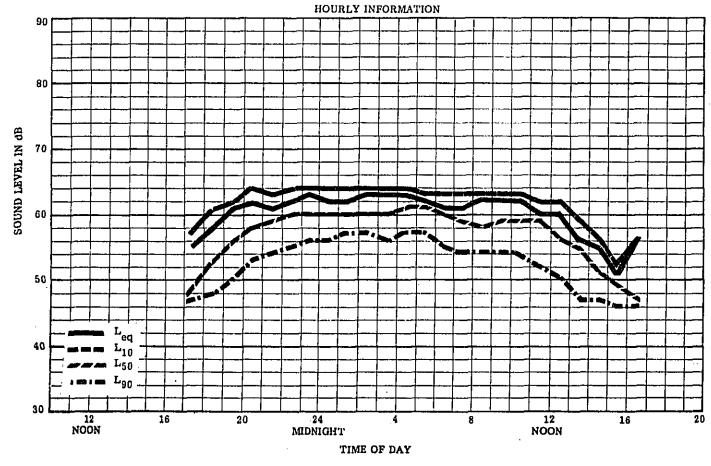
Location: City Hall Roof		Date	Time
Serial Number of Mike: 506149	Start	1-7-77	17:30
EPA Property Number of Analyzer: 063019	Finish	1-8-77	16:30
Operator: ^{KR}			

Hour	Leq	L ₁₀	L 50	L ^{SD}	Hour	Leq	L ₁₀	L 50	L ₉₀
1730	55	57	49	47	0630	61	63	60	55
1830	58	61	53	48	0730	61	63	59	54
1930	61	62	56	50	0830	62	63	58	54
2030	62	64	58	53	0930	- 62	63		54
2130	61	63	59	54	1030	62	63	59	54
2230	62	64	60	55	1130	60	62	59	52
2330	63	64	60	56	1230	60	62	56	50
2430	62	64	60	56	1330	56	59	55	47
0130	62	64	60	57	1430	55	56	51	47
0230	63	64	60	57	1530	51	. 52	49	46
0330	63	64	60	56	1630	56	55	47	46
0430	63	64	61	57					
0530	62	63	61	57					

All Descriptions in Decibels

 $L_{dn} = 69 dB$

4


ក្នុះមា

 $L_{eq} = 59.0 \text{ dB} (9-5)$

Summary of sound levels at City Hall – January 7, 1977

DAY-NIGHT AVERAGE LEVEL (L_{dn}): 68.5 dB

بالوغراب واراحه وتكليهم عنيد يكومون ومعاط سعاك

E-4

24-HOUR DATA SHEET

Location: City Hall Roof			Date	1 Time
Serial Number of Mike: 506149		Start	1-8-77	17:30
EPA Property Number of Analyzer:	063019	Finish	1-9-77	16:30
Operator: R.R.				

Hour	L _{eq}	L ₁₀	L 50	L 90	Hour	Leq	L10	L ₅₀	L ₉₀
1730	54	57	48	47	0630	61	62	58	54
1.830	55	58	49	48	0730	60	62	57	54
1930	55	58	50	48	0830	60	61	36	52
2030	59	61	51	49	0930	58	61	55	52
2130	60	62-	55	52	1030	57	- 59	- 54	57.
2230	60	62	56	50	1130	54	57	52	49
2330	61	63	57	50	1230	55	56	48	47
2430	61	63	59	54	1330	49	50	45	40
0130	62	62	58	53	. 1430	47	46	41	4 0
0230	61	63	57	55	1530	50	· 49	40	38
0330	61	63	58	53	1630	52	55	41	39
0430	61	63	57	52					
0530	62	63	59	54					
							,		

:

and the second second and the second seco

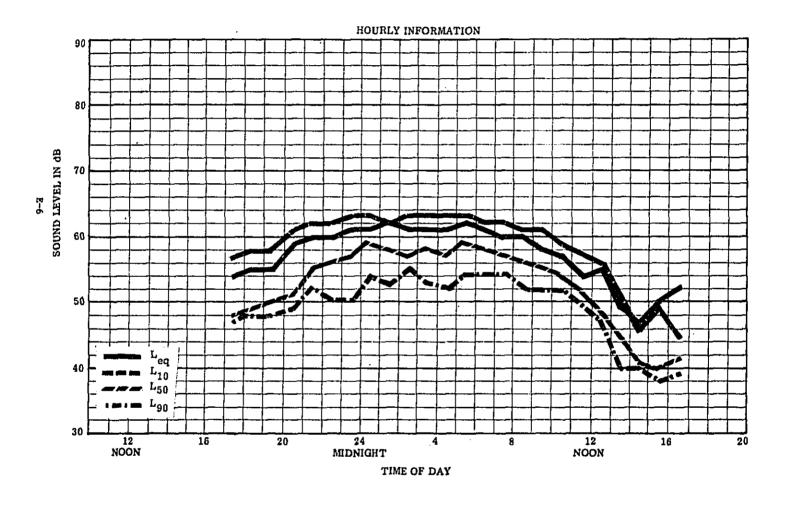
All Descriptions in Decibels

 $L_{dn} = 67 dB$

.

1

A PARTICULAR PARTICULAR


à

 $L_{eq} = 54.2 \text{ dB} (9-5)$

E-5

Summary of sound levels at City Hall - January 8, 1977

DAY-NIGHT AVERAGE LEVEL (L_{dn}): 67.1 dB

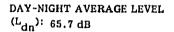
24-HOUR DATA SHEET

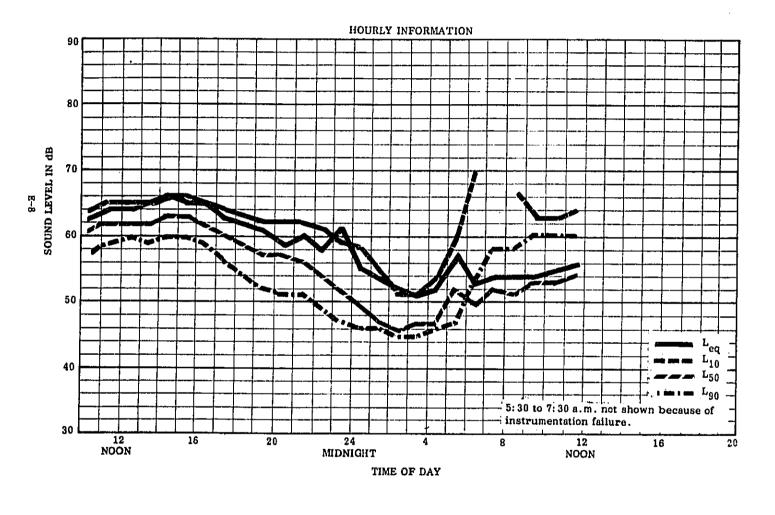
Location: City Hall Roof		Date	Time	
Serial Number of Mike: 506149	Start	1-10-77	09:50	
EPA Property Number of Analyzer: 063019 Operator: Konheim	Finish	1-11-77	11:50	

Hour	Leq	L10	L ₅₀	L ₉₀	Hour	Leq	L ₁₀	L ₅₀	L.90
1030	64	64	61	57	2330	61	59	51	47
1130	65	65	62	59	2430	55	58	49	46
1230	64	65	62	60	0130	54	55	47	46
1330	65	65	62	60	0230	52	51	46	45
1430	66	66	63	60	0330	51	51	47	45
1530	65	66	63	60	0430	52	54	47	46
1630	65	65	62	59	0530	57	60	52	47
1730	63	64	60	56	0630	63	71	60	54
1830	62	63	59	54	0730	64	71	60	54
1930	61	62	57	52	0830	64	67	61	58
2030	59	62	57	51	0930	64	63	63	60
2130	60	62	56	51	1030	65	63	63	60
2230	58	61	54	49	1130	66	64	64	60
			<u>_</u>		· ·				

E-7

وكالعارية والمردومة باذخافا وأسلت


All Descriptions in Decibels


 $L_{dn} = 66 dB$

r

- $L_{eq} = 65.3 \text{ dB} (9-5)$

Summary of sound levels at City Hall - January 10, 1977

24-HOUR DATA SHEET

Location: 7111 McMullens			Date	Time
Serial Number of Mike: 506149		Start	15:00	
EPA Property Number of Analyzer:	063019	Finish	14:45	
Operator: AK				

All Descriptions in Decibels

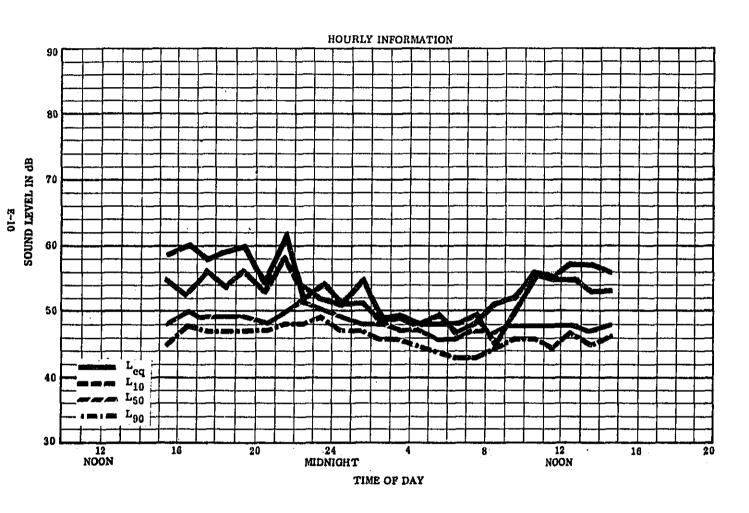
Hour	L _{eq}	L ₁₀	L 50	L ⁹¹	Hour	Leq	L 10	L 50	L ₉₀
1530	59	54	48	45	0 3 3 0	49	49	47	46
1630	60	53	50	48	0430	48	48	47	46
1730	58	56	49	47	0530	49	48	46	44
1830	- 59	54	49	47	0630	- 47-	48	46	43
1930	60	56	49	47	0730	48	49	47	43
2030	54	53	. 48	47	0830	51	45	47	44
2130	62	58	50	48	0930	52	50	48	46
2230		53	51	48	1030	- 56	-56	48	46
2330	54	54	50	49	1130	55	55	48	44
24 30	51	51	49	47	1230	57	55	48	47
0130	55	51	48	47	1330	57	53	47	45
0230	49	49	48	46	1430	56	53	48	46
,]				

÷

and a start of the second s

 $L_{dn} = 59.3 \text{ dB}$

L_{eq} = 57.1 dB (9-5)


بيكاب الكربيا فالدرونيورون أنبا كالمهيم معكنيا أغلا مهدوا وماروعها ممتهماهم فيستعقص

1000 1000

ىلىكى ۋە يەرىپ بىلەر بەرىكى سەرسەر بەرمەر بەرمەر بەرمەر بەر

ŧ

٠.

Summa**ry of** sound levels at 7111 McMullen Drive

DAY-NIGHT AVERAGE LEVEL (L_{dn}): 59.3 dB

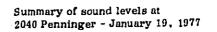
وأرجاب والمراجب والمرفكة لمتحادث والمتعان والمتعاد والمستان تشعب

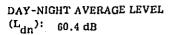
e di

24-HOUR DATA SHEET

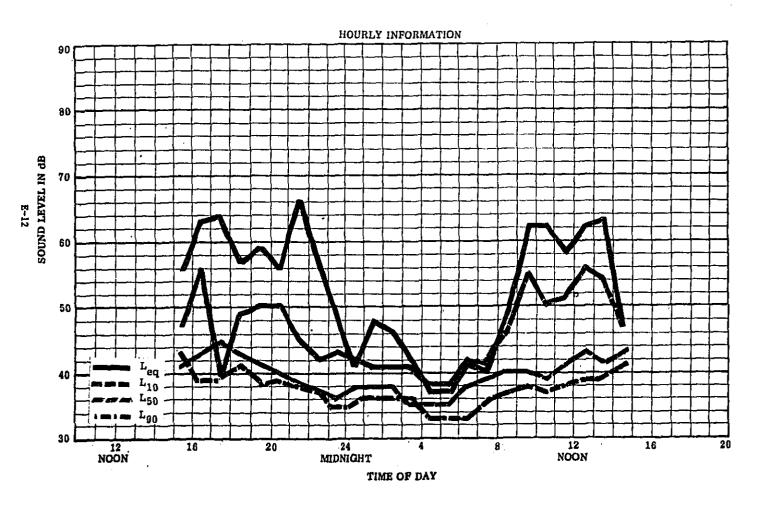
	Date	Time
Start	1-12-77	14:15
Finish	1-13-77	14:50
		Start 1-12-77

Hour	Leq	L ₁₀	L ₅₀	L ₉₀	Hour	Leq	L ₁₀	L ₅₀	^L 90
1530	56	47	41	43	0330	42	41	35	36
1630	63	56	43	39	0430	37	38	35	33
1730	64	40	45	39	0530	37	38	35	33
1830	57	49	43	41	0630	41	42	38	33
1930	59	50	41	38	0730	40	41	39	36
2030	56	50	40	39	0830	49	46	40	37
2130	67	45	39	38	0930	62	55	40	38
2230	57	42	37	37	1030	62	50	39	37
2330	49	43	[.] 36	35	1130	58	51	41	38
2430	41	42	38	35	1230	62	56	43	39
0130	48	41	38	36	1330	63	54	41	39
0230	46	41	38	36	1430	47	47	43	41
		,	I						


All Descriptions in Decibels


 $L_{dn} = 60.4 dB$

ķ


L_{eq} = 60.9 dB (9-5)

E-11

.

and and the second states of the second states and the second states and the second states and the second states

24-HOUR DATA SHEET

Location: 2800 N. Fry			Date	Time
Serial Number of Mike: 442933		Start	1-12-77	16:55
	063020	Finish	1-13-77	17:35
Operator: 063020 R.R.				

All Descriptions in	1 Decibels
---------------------	------------

.

.

,

2

Hour	L _{eq}	L ₁₀	L 50	L ₉₀	Hour	Leq	L ₁₀	L ₅₀	L ₉₀
1830	47	47	36	33	0530	31	31	30	30
1930	41	42	33	31	0630	35	35	32	30
2030	41	43	33	30	0730	46	53	.34	30
2130	46	47	31	30	0830	44	41	36	32
2230	38	34	30	30	0930	44	41	35	33
2330	43	38	30	30	1030	48	45	36	33
2430	37	35	32	30	1130	41	40	35	34
0130	34	35	31	30	1230	42	42	36	34
0230	34	33	30	30	1330	43	42	34	33
0330	34	33	30	30	1430	41	38	33	31
0430	32	30	30	30	1530	40	39	34	31
		·			1630	42	41	33	32
					1730	45	44	-, 34	31

 $L_{dn} = 45.4 \text{ dB}$ $L_{eq} = 43.4 \text{ dB} (9-5)$

E-13

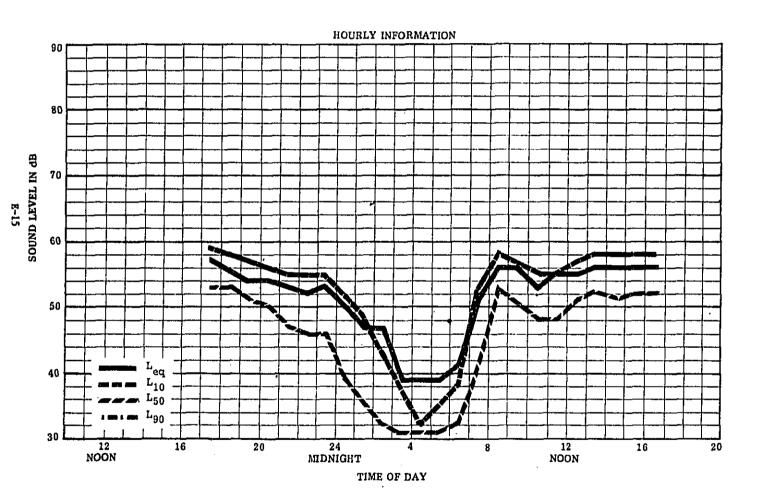
and the second
24-HOUR DATA SHEET

Location: 2205 Harrison			Date	Time	
Serial Number of Mike: 506149		Start	1-12-77	16:15	
EPA Property Number of Analyzer:	063019	Finish	1-13-77	16:35	
Operator: R.R.					

.

, a day to be and and an any start of a same to and the

Hour	Leq	L ₁₀	L ₅₀	r ^{co}	Hour	Leq	L 10	L ₅₀	L ₉₀
1730	57	59	53		0430	39	32	31	
1830	56	58	53		0530	39	35	31	
1930	54	57	51	1	0630	41	38	32	
2030	54	56	50		0730	51	53	41	
2130	53	55	47		0830	56	58	53	
2230	52	55	46		0930	56	57	51	
2330	53	55	46		1030	53	56	48	
2430	49	52	39		1130	55	55	48	
0130	47	49	35		1230	55	57	51	
0230	47	43	32		1330	56	, 58	52	
0330	39	37	31		1430	56	58	51	
					1530	56	58	52	
					1630	56	58	52	


All Descriptions in Decibels

 $L_{dn} = 56.5 dB$

•

L_{eg} = 55.5 dB (9-5)

i.

Summary of sound levels at 2205 Harrison Blvd. - January 12, 1977 DAY-NIGHT AVERAGE LEVEL (L_{dn}): 56.5 dB

·. ·

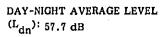
24-HOUR DATA SHEET

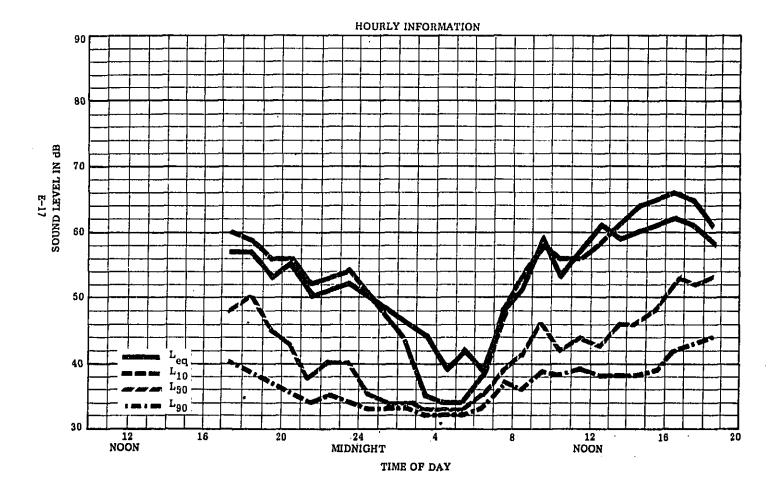
Location: 1814 8th Street Serial Number of Mike: 526575 EPA Property Number of Analyzer: 019156 Operator: R.R.

		Date	Time	
	Start	1-13-77	15:50	
56	Finish	1-14-77	18:30	
	1	1		

Hour	Leq	L ₁₀	L ₅₀	L. 90	Hour	Leq	L 10	L ₅₀	L ₉₀
1730	59	60	48	40	0530	42	34	33	32
1830,	58	59	50	39	0630	39	38	35	33
1930	53	56	45	37	0730	48	48	39	37
2030	55	56	43	35	0830	51	53	41	36
2130	50	52	38	34	0930	59	58	4ó	39
2230	51	53	40	35	1030	53	56	42	39
. 2330	52	54	40	34	1130	57	56	44	39
2430	50	50	35	33	1230	61	58	43	38
0130	48	48	34	33	1330	59	61	46	38
0230	46	43	34	33	1430	60	• 64	46	38
0330	44	35	33	32	1530	61	65	48	39
0430	39	34	33	32	1630	62	66	53	42
					1730	61	65	52	43
					1830	58	61.	53	44

All Descriptions in Decibels


L_{dn} = 58 dB


$$L_{eq} = 59.7 \text{ dB} (9-5)$$

E-16

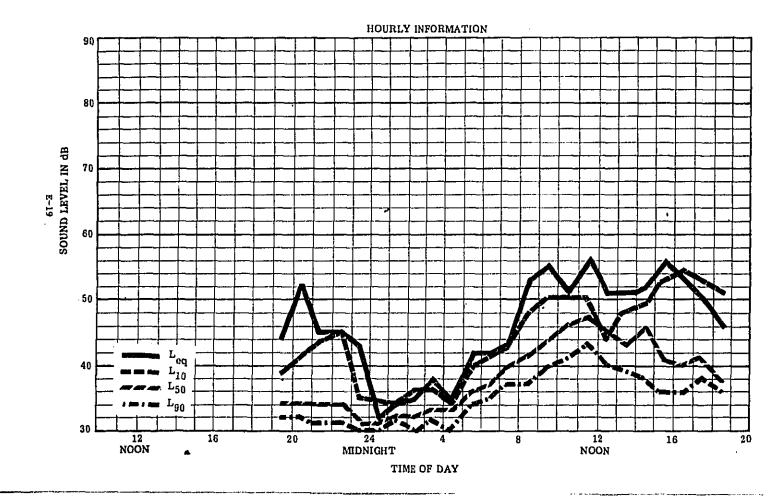
.

Summary of sound levels at 1814 Eighth Street - January 13, 1977

24-HOUR DATA SHEET

24-Hol Location: 217 Red Fish Lane Serial Number of Mike: 442933 EPA Property Number of Analyzer: 063020 Operator: RR

	Date	Time
Start	- - 1-13-77	18:20
Finish	1=14=77	18:35


All Descriptions in Decibels

Hour	L _{eq}	L ₁₀	L 50	L_90		Hour	Leq	L10	L 50	L ₉₀
1930	44	39	34	32	Ħ	0730	43	43	40	37
2030	52	42	34	32	11	0830	53	48	41	37
2130	45	44	- 34	31	\dagger	0930	55	50	43	40
2230	45	45		31	††	1030	- 51-	50	46	41
2330	43	35	31	30	Ħ	1130	56	50	47	43
2430	32	32	31	30	Ħ	1230	51	44	45	40
0130	. 34	34	32	31	Ħ	1330	51	48	43	39
0230	35	36	32	30	Ħ	1430	52	49	46	38
0330	38	36	33	31	Π	1530	56	53	41	36
0430	35	35	33	30	ħ	1630	53	54	40	36
0530	42	40	36	34	Ħ	1730	50	53	41	38
0630	42	42	37	35	h	1830	46	51	38	36
	1	· ·			Ħ				<u> </u>	
			· <u> </u>							

L_{dn} = 51.5 dB

 $L_{eq} = 53.6 \text{ dB} (9-5)$

E-18

Summary of sound levels at 217 Redfish Lane - January 13, 1977 DAY-NIGHT AVERAGE LEVEL (L_{dn}): ______d

•_

24-HOUR DATA SHEET

Location1050 Krall Street Serial Number of Mike: 506149 EPA Property Number of Analyzer: 063019 Operator: R.R.

		Date	Time	
. 063019	Start	1-13-77	17:10	
	Finish	1-14-77	18:35	
]		
		•		

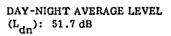
÷

٠,

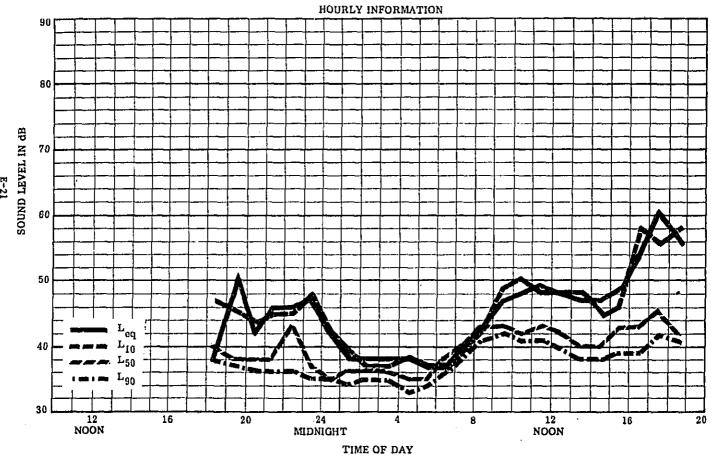
أوأوجع تهزينك وماليقل حيسها ويعاجد فحار سنسمد المسموسي والمسادي

Hour	L _{eq}	L ₁₀	L ₅₀	L ₉₀	Hour	Leq	L ₁₀	L 50	L ₉₀
1830	53	47	40	38	0630	37	37	38	36
1930	51	50	38	36	0730	40	40	40	38
2030	42	44	38	36	0830	43	43	43	41
2130	46	45	38	36	D930	47	49	43	42
2230	46	45	43	35	1030	48	50	42	41
2330	47	48	37	35	1130	49	48	43	41
2430	42	42	35	34	1230	48	48	42	40
0130	38	39	36	35	1330	47	48	40	38
0230	38	37	36	35	1430	47	45	40	38
0330	38	37	36	33	1530	49	. 46	43	39
0430	38	38	35	34	1630	54	58	43	39
0530	37	37			1730	60	56	45	42
					1830		58	42	41

All Descriptions in Decibels


 $L_{dn} = 51.7 dB$

1


 $L_{eq} = 49.3 \text{ dB} (9-5)$

E~20

Summary of sound levels at 1050 Krall Street - January 13, 1977

الوقد أحل ورحمت وتنقيط لاست متنقصون والعادل عايط فأنشاه

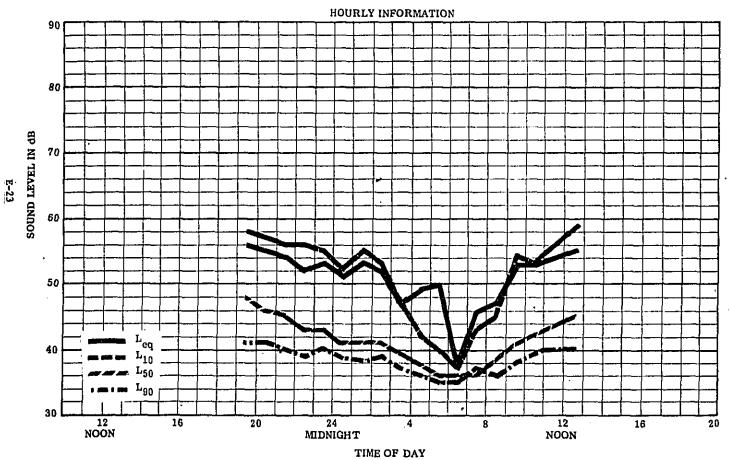
E~21

24-HOUR DATA SHEET

Location: 1814 8th Street		Date] Time
Serial Number of Mike: 526575	Start	1-14-77	18:35
EPA Property Number of Analyzer: 019156 Operator: R.R.	Finish	1-15-77	12:10
Operator: ^{R.R.}			
		1	(

Hour	Leq	L ₁₀	L 50	L 9ú		Hour	Leq	L 10	L_50	L ₉₀
1930	56	58	48	41	1	0730	46	43	36	37
2030	55	57	46	41	\parallel	0830	47	45	38	36
2130	54	56	45	40	†	0930	53	54	41	38
2230	52	- 55	43	39	††	10 30	53	53	42	39
2330	53	55	43	40	Ħ	1130	54	56	44	40
2430	51	52	41	39	\parallel	1230	55	59	45	40
0130	53	55	41	38						
0230	52	53	41	39	\prod					
0330	47	47	39	37	††	- <u></u>				
0430	49	42	37	36	╟				 	
0530	50	40	36	35	┟┼╴	<u> </u>				
0630	38	37	36	35	╏┼╴	<u></u>				
~ <u></u>					┢┝╴	<u> </u>			<u> </u>	
·					╟╴					

All Descriptions in Decibels


E-22

م و مورکنه از او در و میرده و باد و برده و افتار با به مورک میرو میرو میرو از
L_{dn} = 58

.

٠

 $L_{eq} = 53.8 \text{ dB} (9=5)$

|Summary of sound levels at | 1814 Eighth Street - January 14, 1977

.

DAY-NIGHT AVERAGE LEVEL (L_{dn}): 58.0 dB

24-HOUR DATA SHEET

Location: 1050 Krall Street			Date	Time
Serial Number of Mike: 506149		Start	1-14-77	18:35
EPA Property Number of Analyzer:	063019	Finish	1-15-77	12:55
Operator: R. R.			1	

8

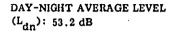
i.

ł

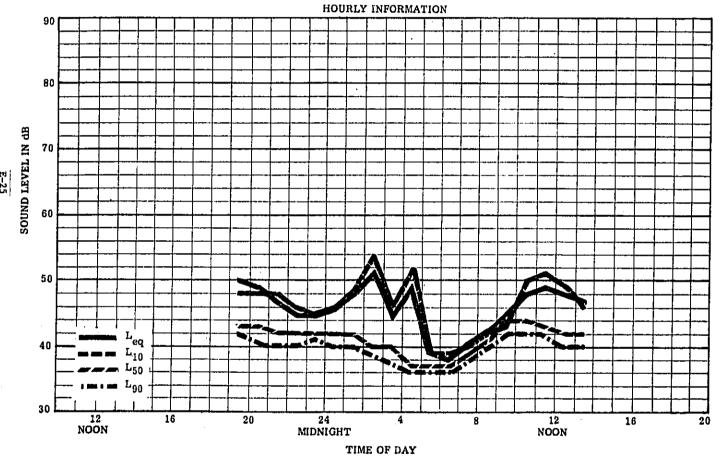
:

1......

the second second states and second second


lour	Leq	L ₁₀	L 50	L.90	Hour	Leq	[^L 10	L ₅₀	L.90
1930	50	48	43	42	0730	40	40	39	33
2030	49	48	43	41	0830	42	42	41	40
2130	47	18	42	40	0930	44	43	44	42
2230	45	46	42	40	1030	48	50	44	-42
2330	45	45	42	41	1130	49	51	43	42
2430	46	46	42	40	1230	48	49	42	40
0130	48	49	42	40	1330	47	46	42	40
0230	51	54	40	38					
0330	45	46	40	37				1	
0430	49	52	37	36					
0530	39	39	37	36	/				
0630	38	39	37	36					
									·
	·		·····				·		

All Descriptions in Decibels


L_{dn} = 53.2 dB

ı.

Summary of sound levels at 1050 Krall Street - January 14, 1977

. •

E-25

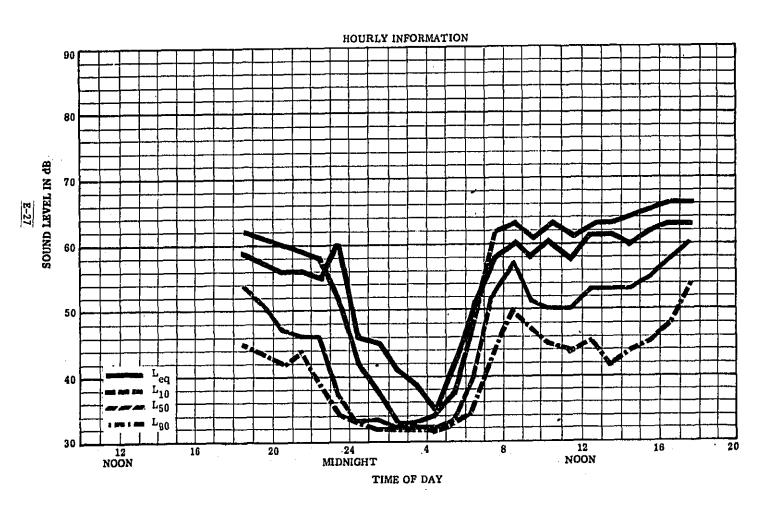
24-HOUR DATA SHEET

Location: 1790 Hill Road Terrace		Date	I Time
Serial Number of Mike: 442933	Start	1-18-77	17:48
EPA Property Number of Analyzer: 06302	Finish	1-19-77	23:42
Operator: AGK		1	

ĩ

•

.


Hour	L _{eq}	L ₁₀	L 50	ւ թ.	1	Hour	Leq	L ₁₀	L ₅₀	L ₉₀
1830	59	62	54	45		0830	60	63	57	50
1930	57	61	51	44	T	0930	58	63	57	50
2030	56	60	47	42	T	1030	60	63	50	45
2130	56	59	46	41	T	1130	58	63	50	45
2230	55	58	46	41		1230	61	63	53	45
2330	50	52	37	34		1330	61	63	53	45
2430	46	42	33	32		1430	60	64	53	44
0130	45	38	33	32		1530	62	65	55	45
0230	41	33	32	32	Π	1630	63	66	58	48
0330	39	33	32	32		1730	63	66	60	54
0430	39	34	32	32	Π					
0530	43	37	33	33	Ħ					
0630	51	50	40	35						
0730	58	62	52	44			1			

All Descriptions in Decibels

L_{dn} = 59,6 dB

و الجميريية بينترو الارزو الرار ا

. _____. $L_{eq} = 60.7 \text{ dB} (9-5)$

Summary of sound levels at 1790 Hill Road Terrace - January 18, 1977 day-night average level (L_{dn}): | 59.6 dB

۰ به مو د

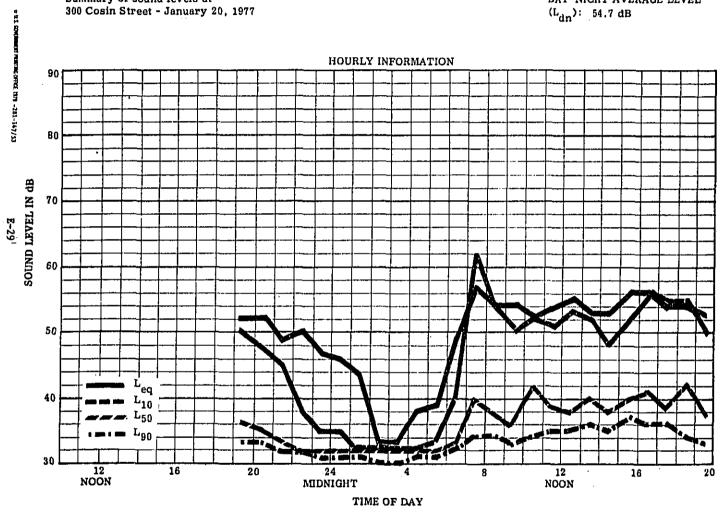
24-HOUR DATA SHEET

.

2

Location: 300 Costin Street		······	Date	Time
Serial Number of Mike: 442933		Start	1-20-77	1908
EPA Property Number of Analyzer:	063020	Finish	1-21-77	2010
Operator: Konheim				

Hour	Leq	L ₁₀	L ₅₀	L 90	Hour	Leq		L 50	L ₉₀
1930	52 .	50	36	33	0730	59	62	40	34
2030	52	48	,35	33	0830	54	54	38	34
2130	49	45	33	32	0930	54	54	38	34
2230	50	38	32	32	1030	52	52	42	34
2330	47	35	32	31	1130	54	51	39	35
2430	46	35	32	31	1230	55	53	38	35
0130	43	32	32	31	1330	53	52	40	36
0230	33	32	32	30	1430	53	48	38	35
0330	33	32	32	30	1530	56	52	40	37
0430	38	32	32	31	1630	56	56	41	36
0530	39	33	32	31	1730	54	55	39	36
	4.8	40	33	_32	1830	54	-55	42	
					1930	53	50	37	33


All Descriptions in Decibels

L_{dn} = 54.7 dB

1

L_{eq} = 54.3 dB (9-5)

E-28

Summary of sound levels at 300 Cosin Street - January 20, 1977

DAY-NIGHT AVERAGE LEVEL (L_{dn}): 54.7 dB

. . ۰. ited States vironmental Protection jency ashington DC 20460

•

Special Fourth-Class Rate Book _____ ficial Business nalty for Private Use \$300

يبدر و

المتحقق والمقادمة